Mahmoud Mousavi

Work place: Development Unit, SanatkadeheSabze Pasargad Company (S.S.P. Co), Shiraz, Iran

E-mail: SSP.ROBOTIC@gmail.com

Website:

Research Interests: Artificial Intelligence, Process Control System, Error Control

Biography

Mahmoud Mousavi is a control and automation researcher at research and development company SSP. Co. He is an expert in nonlinear control, artificial intelligence and expert systems. His research activities deal with the nonlinear robotic control, artificial intelligence and expert system.

Author Articles
Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot

By Afsaneh Salehi Farzin Piltan Mahmoud Mousavi Arzhang Khajeh Mohammad Reza Rashidian

DOI: https://doi.org/10.5815/ijieeb.2013.01.01, Pub. Date: 8 May 2013

Refer to this paper, an intelligent-fuzzy feed-forward computed torque estimator for Proportional-Integral-Derivative (PID) controller is proposed for highly nonlinear continuum robot manipulator. In the absence of robot knowledge, PID may be the best controller, because it is model-free, and its parameters can be adjusted easily and separately and it is the most used in robot manipulators. In order to remove steady-state error caused by uncertainties and noise, the integrator gain has to be increased. This leads to worse transient performance, even destroys the stability. The integrator in a PID controller also reduces the bandwidth of the closed-loop system. Model-based compensation for PD control is an alternative method to substitute PID control. Computed torque compensation is one of the nonlinear compensator. The main problem of the pure computed torque compensator (CTC) was highly nonlinear dynamic parameters which related to system’s dynamic parameters in certain and uncertain systems. The nonlinear equivalent dynamic problem in uncertain system is solved by using feed-forward fuzzy inference system. To eliminate the continuum robot manipulator system’s dynamic; Mamdani fuzzy inference system is design and applied to CTC. This methodology is based on design feed-forward fuzzy inference system and applied to CTC. The results demonstrate that the model base feed-forward fuzzy CTC estimator works well to compensate linear PID controller in presence of partly uncertainty system (e.g., continuum robot).

[...] Read more.
Other Articles