Roman Kutelmakh

Work place: Lviv Polytechnic National University, Lviv, Ukraine

E-mail: rkutelmakh@ua.fm

Website:

Research Interests: Data Structures and Algorithms, Algorithm Design, Analysis of Algorithms, Combinatorial Optimization

Biography

Roman Kutelmakh, Ph.D. Graduated from the Lviv Polytechnic National University in 2005 with master degree in Computer Science. In 2011 has finished post-graduate study and defended Ph.D. dissertation “Mathematical Methods and Software for Solving Large-Scale Traveling Salesman Problem” in the Lviv Polytechnic National University. In 2008, he had scholarship at the Bordeaux University (supervisor Dr. R. Dupas). Major fields of scientific research: algorithm analysis and design, combinatorial optimization, Currently is senior lecturer at the Software Department of the Lviv Polytechnic National University (Ukraine). Has 18 scientific publications.

Author Articles
A Parallel Ring Method for Solving a Large-scale Traveling Salesman Problem

By Roman Bazylevych Bohdan Kuz Roman Kutelmakh Remy Dupas Bhanu Prasad Yll Haxhimusa Lubov Bazylevych

DOI: https://doi.org/10.5815/ijitcs.2016.05.01, Pub. Date: 8 May 2016

A parallel approach for solving a large-scale Traveling Salesman Problem (TSP) is presented. The problem is solved in four stages by using the following sequence of procedures: decomposing the input set of points into two or more clusters, solving the TSP for each of these clusters to generate partial solutions, merging the partial solutions to create a complete initial solution M0, and finally optimizing this solution. Lin-Kernighan-Helsgaun (LKH) algorithm is used to generate the partial solutions. The main goal of this research is to achieve speedup and good quality solutions by using parallel calculations. A clustering algorithm produces a set of small TSP problems that can be executed in parallel to generate partial solutions. Such solutions are merged to form a solution, M0, by applying the "Ring" method. A few optimization algorithms were proposed to improve the quality of M0 to generate a final solution Mf. The loss of quality of the solution by using the developed approach is negligible when compared to the existing best-known solutions but there is a significant improvement in the runtime with the developed approach. The minimum number of processors that are required to achieve the maximum speedup is equal to the number of clusters that are created.

[...] Read more.
Other Articles