Work place: Department of Educational Psychology, University of KwaZulu-Natal, Edgewood Campus, South Africa
E-mail: edimo8383@gmail.com
Website: https://orcid.org/0000-0001-6148-9127
Research Interests: Social Sciences, Arts and Humanities
Biography
Edith Edimo Joseph, Ph.D, received the Bachelor of Arts in Education/English (B.Ed) from the University of Nigeria, Nsukka and Master of Education in Counselling Psychology from the University of Benin, Benin City. She recently completed her PhD studies from the University of KwaZulu-Natal, Durban South Africa. Her research interest includes Invitational Education, Menstruation and Learning, Inclusion and Social justice and Out-of-School Children. She is currently a Lecturer at Federal University Lokoja, Kogi state, Nigeria. She can be reached with edimo8383@gmail.com
By Edith Edimo Joseph Joseph Isabona Sunday Dare Odaro Osayande Okiemute Roberts Omasheye
DOI: https://doi.org/10.5815/ijitcs.2023.03.01, Pub. Date: 8 Jun. 2023
The negative impact of out-of-school students' problems at the basic and high-school levels is always very weighty on the affected individuals, parents, and society at large. Owing to the weighty negative consequences, policymakers, different government agencies, educators and researchers have long been looking for how to effectively study and forecast the trends as a means of offering a concrete solution to the problem. This paper develops a better hybrid machine learning method, which combines the least square and support vector machine (LS-SVM) model for robust prediction improvement of out-of-school children trend patterns. Particularly, while other previous works only engaged some regional and few samples of out-of-school datasets, this paper focused on long-ranged global out-of-school datasets, collated by UNESCO between 1975- 2020. The proposed hybrid method exhibits the optimal precision accuracies with the LS-SVM model in comparison with ones made using the ordinary SVM model. The precision performance of both LS-SVM and SVM was quantified and a lower NRMSE value is preferred. From the results, the LS-SVM attained lower error values of 0.0164, 0.0221, 0.0268, 0.0209, 0.0158, 0.0201, 0.0147 and 0.0095 0.0188, compared to the SVM model that attained higher NRMSE values of 0.041, ,0.0628, 0.0381, 0.0490, 0.0501, 0.0493, 0.0514, 0.0617 and 0.0646, respectively. By engaging the MAPE indicator, which expresses the mean disconnection between the sourced and predicted values of the out-of-school data. By means of the MAPE, LS-SVM attained lower error values of 0.51, 1.88, 0.82, 2.38, 0.62, 2.55, 0.60, 0.60, 1.63 while SVM attained 1.83, 7.39, 1.79 7.01, 2.43, 8.79, 2.58, 4.13, 6.18. This implies that the LS-SVM model has better precision performance than the SVM model. The results attained in this work can serve as an excellent guide on how to explore hybrid machine-learning techniques to effectively study and predict out-of-school students among researchers and educators.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals