Work place: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Hyderabad-500075, India
E-mail: vijay.kumar@klh.edu.in
Website:
Research Interests: Cloud Computing, Machine Learning, Artificial Intelligence
Biography
Vijay Kumar Damera recently submitted his Doctoral Thesis in the Area of Cloud Computing. He has 14 years of Teaching and 1.5 years of Research Experience. His research interests include Cloud Computing, Artificial Intelligence, Machine Learning and Software Defined Networks. He has more than 28 research publications to his credit in various International Journals and Conferences. He is currently working in the department of Computer Science and Engineering at K L Deemed to be University off campus Hyderabad.
By Ramesh Vatambeti Vijay Kumar Damera Karthikeyan H. Manohar M. Sharon Roji Priya C. M. S. Mekala
DOI: https://doi.org/10.5815/ijcnis.2023.06.01, Pub. Date: 8 Dec. 2023
Thanks to recent technological advancements, low-cost sensors with dispensation and communication capabilities are now feasible. As an example, a Wireless Sensor Network (WSN) is a network in which the nodes are mobile computers that exchange data with one another over wireless connections rather than relying on a central server. These inexpensive sensor nodes are particularly vulnerable to a clone node or replication assault because of their limited processing power, memory, battery life, and absence of tamper-resistant hardware. Once an attacker compromises a sensor node, they can create many copies of it elsewhere in the network that share the same ID. This would give the attacker complete internal control of the network, allowing them to mimic the genuine nodes' behavior. This is why scientists are so intent on developing better clone assault detection procedures. This research proposes a machine learning based clone node detection (ML-CND) technique to identify clone nodes in wireless networks. The goal is to identify clones effectively enough to prevent cloning attacks from happening in the first place. Use a low-cost identity verification process to identify clones in specific locations as well as around the globe. Using the Optimized Extreme Learning Machine (OELM), with kernels of ELM ideally determined through the Horse Herd Metaheuristic Optimization Algorithm (HHO), this technique safeguards the network from node identity replicas. Using the node identity replicas, the most reliable transmission path may be selected. The procedure is meant to be used to retrieve data from a network node. The simulation result demonstrates the performance analysis of several factors, including sensitivity, specificity, recall, and detection.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals