Work place: Dept. Electrical and Information Engineering, Universitas Gadjah Mada, Indonesia
E-mail: rajif.a.y@mail.ugm.ac.id
Website:
Research Interests: Cyber Security
Biography
Rajif Agung Yunmar is a Ph.D. student in the Department of Electrical and Information Engineering at Universitas Gadjah Mada (UGM) in Yogyakarta, Indonesia. Additionally, he serves as a lecturer at the Department of Informatics Engineering at Institut Teknologi Sumatera (ITERA). His research concentrates on cybersecurity and mobile security, with a focus on detecting and mitigating potential security threats to mobile devices and the networks they connect to. He holds several industry-recognized cybersecurity certifications, including Certified Ethical Hacker (CEH), HCIA-Security, Certified Incident Handler (ECIH), and Cisco CCST Cybersecurity.
By Rajif Agung Yunmar Sri Suning Kusumawardani Widyawan Widyawan Fadi Mohsen
DOI: https://doi.org/10.5815/ijcnis.2024.02.03, Pub. Date: 8 Apr. 2024
The persistent threat of malicious applications targeting Android devices has been growing in numbers and severity. Numerous techniques have been utilized to defend against this thread, including heuristic-based ones, which are able to detect unknown malware. Among the many features that this technique uses are system calls. Researchers have used several representation methods to capture system calls, such as histograms. However, some information may be lost if the system calls as a feature is only represented as a 1-dimensional vector. Graphs can represent the interaction of different system calls in an unusual or suspicious way, which can indicate malicious behavior. This study uses machine learning algorithms to recognize malicious behavior represented in a graph. The system call graph was fed into machine learning algorithms such as AdaBoost, Decision Table, Naïve Bayes, Random Forest, IBk, J48, and Logistic regression. We further employ a series feature selection method to improve detection accuracy and eliminate computational complexity. Our experiment results show that the proposed method has reduced feature dimension to 91.95% and provides 95.32% detection accuracy.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals