A New Hybrid Encryption Approach for Secure Communication: GenComPass

Full Text (PDF, 1153KB), PP.1-10

Views: 0 Downloads: 0

Author(s)

Remzi Gurfidan 1,* Mevlut ERSOY 2

1. Isparta University of Applied Science/Computer Programming, Isparta, 32500, Turkey

2. Süleyman Demirel University/Computer Engineering, Isparta, 32650, Turkey

* Corresponding author.

DOI: https://doi.org/10.5815/ijcnis.2020.04.01

Received: 15 Mar. 2020 / Revised: 22 Mar. 2020 / Accepted: 30 Mar. 2020 / Published: 8 Aug. 2020

Index Terms

Genetic Algorithm, Particle Swarm Optimization, Encryption and Decryption

Abstract

When looking at the daily life flow and working sectors, it is seen that almost all work and transactions are carried out electronically. It performs many data streams in the electronic transactions performed. The importance of information security is exactly at this point. To ensure the security of the data, the journey of the data between the sender and the receiver is encrypted. In this study, a hybrid application that creates encrypted text using genetic algorithm and particle swarm algorithm has been developed. In the first step of the study, two separate keys were generated to encode the message using the genetic algorithm and particle swarm algorithm. Shannon Entropy method was used as a fitness function in both algorithms. The message was encrypted with the genetic algorithm method by choosing the key that obtained the best result from the compliance function. The encrypted message was decoded by applying a reverse genetic algorithm to the recipient. The encryptions made using the generated key were measured and the results of the AES algorithm were compared. In the proposed model, successful performances were obtained as the maximum switching space and encryption time for encryption. As a result, the proposed application offers an alternative method of data encryption and decryption that can be used for message transmission.

Cite This Paper

Remzi GÜRFİDAN, Mevlüt ERSOY, "A New Hybrid Encryption Approach for Secure Communication: GenComPass", International Journal of Computer Network and Information Security(IJCNIS), Vol.12, No.4, pp.1-10, 2020. DOI:10.5815/ijcnis.2020.04.01

Reference

[1]Canbek, G, Sağıroğlu, Ş. Bilgi, Bilgi Güvenliği ve Süreçleri Üzerine Bir İnceleme. Politeknik Dergisi, 9 (3), 165-174. Retrieved From Https://Dergipark. Org.Tr/Tr/Pub/Politeknik/İssue/33021/367110, 2016.
[2]Vural, Y, Sağıroğlu, Ş. (2013). Kurumsal Bilgi Güvenliği ve Standartları Üzerine Bir İnceleme. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 23 (2), Retrieved FromHttps:// Dergipark.Org.Tr /Tr/Pub/Gazimmfd/İssue/6676/ 88512
[3]Tekerek M. Bilgi Güvenliği Yönetimi. KSÜ Fenvee Mühendislik Dergisi, 11(1), 2008
[4]Topaloğlu N., Calp M. H., Türk B. Bilgi Güvenliği Kapsamında Yeni Bir Veri Şifreleme Algoritması Tasarımı ve Gerçekleştirilmesi. Bilişim Teknolojileri Dergisi, Cilt: 9, SAYI:3, 2016.
[5]Yeşilbaş E. Cebirsel Kriptoloji Yöntemleri ve Bazı Uygulamaları, Yüksek Lisans Tezi, Rize, 2016.
[6]Obaid Z., Sabonchi A., Akay B. Klasik Kriptoloji Yöntemlerinin Karşılaştırılması, NWSAENS, Doi: 10.12739, 2016
[7]Yayık A. Yapay Sinir Ağı ile Kriptoloji Uygulamaları. Yüksek Lisans Tezi. Mustafa Kemal Üniversitesi, 2013.
[8]Wong K., Wark M., Dawson E. A Sıngle-Chıp Fpga Implementatıon Of the Data Encryptıon Standard (Des) Algorıthm. IEEE, Australia.1998
[9]ZhangX., Parhi K. K. High-Speed VLSI Architectures for the AES Algorithm. IEEE Transactıons On Very Large Scale Integratıon (VLSI) Systems, Vol. 12, No. 9, September, 2004.
[10]Zeghid M., Machhout M., Khriji L., Baganne A., Tourki R. A Modified AES Based Algorithm for Image Encryption. World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering Vol:1, No:3, 2007.
[11]Yerlikaya T., Buluş E., Buluş N. Kripto Algorıtmalarının Gelişimi ve Önemi. Akademik Bilişim Konferansları, 9-11, 2006.
[12]Goyat S. Genetıc Key Generatıon For Publıc Key Cryptography. International Journal of Soft Computing and Engineering (IJSCE), ISSN: 2231-2307, Volume-2, Issue-3, Page: 231-233, 2012.
[13]Nazeer M. I., Mallah G. A., Shaikh N.A., Bhatra R., Memon R. A., Mangrio M. I. Implication of Genetic Algorithm in Cryptography to Enhance Security. International Journal of Advanced Computer Science and Applications, Vol. 9, No. 6, 2018.
[14]Kösemen C., Dalkılıç G., Aydın Ö. Genetic Programming- Based Pseudorandom Number Generator For Wireless İdentification And Sensing Platform. TÜBİTAK, Doi:10.3906/elk-1710-155, 2018.
[15]Sinhuja K, Premela D. S. Symmetric Key Encryption Technique Using Genetic Algorithm. (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1), 2014, 414-416, ISSN: 0975- 9646, 2014.
[16]Ivanov G., Nikolov N., Nikova S. Reversed Genetic Algorithms For Generation Of Bijective S-Boxes With Good Cryptographic Properties. Springer Science+Business Media New York, Doi 10.1007/s12095-015-0170-5., 2016.
[17]Khan F.U., Bhatia S. A Novel Approach To Genetıc Algorıthm Based Cryptograph. International Journal of Research in Computer Science, eISSN 2249-8265 Volume 2 Issue 3 pp. 7-10, 2012.
[18]Delman B. Genetic Algorithms in Cryptography. Rochester Institute of Technology RIT Scholar Works, Master Thesis, 2004.
[19]Bhattacharya T., Bhowmik S., Chaudhuri B. S.R. A Steganographic Approach by using Session Based Stego-Key, Genetic Algorithm and Variable Bit Replacement Technique. IEEE Computer Society, 978-0-7695-3504-3/08, Doi: 10.1109, 2008
[20]Meneses A. A. M., Machado M. D., Schirru R. Partical Swarm Optimization Applied to the Nuclear Reload Problem of Pressurized Water Reactor. Progress in Nuclear Energy 51 (2009) 319–326.
[21]Zahran B. M., Kanaan G. Text Feature Selection using Particle Swarm Optimization Algorithm. World Applied Sciences Journal 7 (Special Issue of Computer & IT): 69-74, ISSN 1818-4952, 2009.
[22]Uddin M. F., Youssef A. M. Cryptanalysis of Simple Substitution Ciphers Using Particle Swarm Optimization. Congress on Evolutionary Computation, 2006.
[23]Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.
[24]Shi, Y. (2001, May). Particle swarm optimization: developments, applications and resources. In Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546) (Vol. 1, pp. 81-86). IEEE.