Channel Aware Power Allocation and Diversity Gain Selection for Mimo Noma System

PDF (688KB), PP.115-127

Views: 0 Downloads: 0

Author(s)

Suprith P. G. 1,* Mohammed Riyaz Ahmed 1 Mithileysh Sathiyanarayanan 2

1. School of Electronics and Communication Engineering at REVA University, Bengaluru, India

2. City University, London

* Corresponding author.

DOI: https://doi.org/10.5815/ijcnis.2025.02.08

Received: 17 Oct. 2023 / Revised: 14 Feb. 2024 / Accepted: 10 Jul. 2024 / Published: 8 Apr. 2025

Index Terms

OFDM, MIMO, NOMA, QAM and Waterfilling

Abstract

In recent communications, multiple-input-multiple-output (MIMO), orthogonal frequency division multiplexing (OFDM) and Non-Orthogonal Multiple Access (NOMA), and are major sub-system techniques of 5G wireless communications for optimization of latency, Bit Error Rate (BER) and improvement of throughput. In this paper, the proposed design, manages the resource allocations among the techniques to meet the requirements using NOMA and MIMO. The interactive waterfilling based PA in MIMO and NOMA to improve Quality of Service (QoS) and investigated NOMA cell free massive MIMO system by considering effect of linear and individual channel estimations. The proposed system also optimizes user pairing approach for group users that optimize downlink rate per user so that PA can be acceptable at cost of involvedness. Lastly, the proposed system demonstrates experimental results to different noisy channel to minimize the BER and latency that does not degraded in performance compared to the existing PA. The design is validated under single user, 2, 4, 8 users under different noisy channels. The proposed system also validated for up-link transmission under same channels by interactive waterfilling based PA in MIMO and NOMA. Based on obtained simulation results, BER is optimized by 8%, SNR, throughput and PAPR are optimally obtained by 5.5%, 7% and 6% respectively.

Cite This Paper

Suprith P. G., Mohammed Riyaz Ahmed, Mithileysh Sathiyanarayanan, "Channel Aware Power Allocation and Diversity Gain Selection for Mimo Noma System", International Journal of Computer Network and Information Security(IJCNIS), Vol.17, No.2, pp.115-127, 2025. DOI:10.5815/ijcnis.2025.02.08

Reference

[1]R. Zayani, H. Shaiek and D. Roviras, "PAPR-Aware Massive MIMO-OFDM Downlink", in IEEE Access, vol. 7, pp. 25474-25484, 2019, DOI: 10.1109/ACCESS.2019.2900128.
[2]A.S. Namitha, S.M. Sameer, “A bandwidth efficient selective mapping technique for the PAPR reduction in spatial multiplexing MIMO-OFDM wireless communication system”, Physical Communication (2017), DOI: org/10.1016/j.phycom.2017.09.009.
[3]Flizikowski, A., Marciniak, T., Wysocki, T.A. et al. “Selected Aspects of Non orthogonal Multiple Access for Future Wireless Communications”. Math. Comput.Sci. 17, 10 (2023). DOI: org/10.1007/s11786-023-00561-y.
[4]Jin, Y., Hu, Z., Xie, D. et al. “Physical layer security transmission scheme based on artificial noise in cooperative SWIPT NOMA system”, J Wireless Com Network 2021, 144 (2021). DOI: org/10.1186/s13638-021-02020-3.
[5]Ju, J., Zhang, G., Sun, Q. et al. “On the performance of receiver strategies for cooperative relaying cellular networks with NOMA”. J Wireless Com Network 2019, 67 (2019). DOI. org/10.1186/s13638-019-1377-5.
[6]A. A. Nasir, H. D. Tuan, E. Dutkiewicz, H. V. Poor and L. Hanzo, “Low-Resolution RIS-Aided Multiuser MIMO Signaling", IEEE Transactions on Communications, vol. 70, no. 10, pp. 6517-6531, Oct. 2022, DOI: 10.1109/TCOMM.2022.3196061.
[7]S. Yang, J. Zhang, W. Xia, Y. Ren, H. Yin and H. Zhu, "A Unified Framework for Distributed RIS-Aided Downlink Systems Between MIMO-NOMA and MIMO-SDMA", in IEEE Transactions on Communications, vol. 70, no. 9, pp. 6310-6324, Sept. 2022, DOI: 10.1109/TCOMM.2022.3188020.
[8]V. Khodamoradi, A. Sali, O. Messadi, A. Khalili and B. B. M. Ali, "Energy-Efficient Massive MIMO SWIPT-Enabled Systems", IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5111-5127, May 2022, DOI: 10.1109/TVT.2022.3153323.
[9]F. Fang, B. Wu, S. Fu, Z. Ding and X. Wang, "Energy-Efficient Design of STAR-RIS Aided MIMO-NOMA Networks", IEEE Transactions on Communications, vol. 71, no. 1, pp. 498-511, Jan. 2023, DOI: 10.1109/TCOMM.2022.3223706.
[10]D.-D. Tran, S. K. Sharma, S. Chatzinotas, I. Woungang and B. Ottersten, "Short-Packet Communications for MIMO NOMA Systems Over Nakagami-m Fading: BLER and Minimum Blocklength Analysis", IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3583-3598, April 2021, DOI: 10.1109/TVT.2021.3066367.
[11]N. Ye, X. Li, J. Pan, W. Liu and X. Hou, "Beam Aggregation-Based mmWave MIMO-NOMA: An AI-Enhanced Approach," in IEEE Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2337-2348, March 2021, DOI: 10.1109/TVT.2021.3057648.
[12]A. Panchal and A. K. Dutta, "Performance Analysis and Design of MIMO Power NOMA With Estimated Parameters Error Statistics Along With SIC and Hardware Imperfections”, IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1488-1500, Feb. 2021, DOI: 10.1109/TVT.2021.3053360.
[13]M. M. Al-Wani et al., "Interference Cancellation via D2D CSI Sharing for MU-MISO-NOMA System With Limited Feedback", IEEE Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4569-4584, May 2021, DOI: 10.1109/TVT.2021.3070989.
[14]Cui, T., Liu, C., Du, P. et al. Power minimization for GSIC-based uplink cell-free massive MIMO-NOMA systems. EURASIP J. Adv. Signal Process. 2022, 40 (2022). DOI: org/10.1186/s13634-022-00873.
[15]Sanada, Y. Non-orthogonal multiple access with joint maximum likelihood detection in heterogeneous network. J Wireless Com Network 2018, 278 (2018). DOI: org/10.1186/s13638-018-1285-0.
[16]Wang, S., Cao, S. & Ruby, R. “Optimal power allocation in NOMA-based two-path successive AF relay systems”, J Wireless Com Network 2018, 273 (2018). DOI: org/10.1186/s13638-018-1286-z.
[17]Z. Yang, Z. Ding, Y. Wu, P. Fan, “Novel relay selection strategies for cooperative NOMA”, IEEE Trans. Veh. Tehnol. 66(11), 10114–10123 (2017).
[18]Rihan, M., Huang, L. & Zhang, P. “Joint interference alignment and power allocation for NOMA-based multi-user MIMO systems”. J Wireless Com Network 2018, 217 (2018). DOI: org/10.1186/s13638-018-1226-y.
[19]Egan, M., Clavier, L., Zheng, C. et al. “Dynamic interference for uplink SCMA in large-scale wireless networks without coordination”. J Wireless Com Network 2018, 213 (2018). DOI: org/10.1186/s13638-018-1225-z.
[20]Mao, Y., Clerckx, B. & Li, V.O. “Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA”, J Wireless Com Network 2018, 133 (2018). DOI: org/10.1186/s13638-018-1104-7.
[21]M Dai, B Clerckx, D Gesbert, G Caire, “A rate splitting strategy for massive MIMO with imperfect CSIT”, IEEE Trans. Wirel. Commun. 15(7), 4611–4624 (2016).
[22]AG Davoodi, SA Jafar, GDoF of the MISO BC: bridging the gap between finite precision CSIT and perfect CSIT, IEEE International Symposium on Information Theory (ISIT). (IEEE, 2016), pp. 1297–1301.
[23]Vamvakas, P., Tsiropoulou, E.E. &Papavassiliou, S. “A user-centric economic-driven paradigm for rate allocation in non-orthogonal multiple access wireless systems”, J Wireless Com Network 2018, 129 (2018). DOI: org/10.1186/s13638-018-1151-0.
[24]Wang, Xiaoming, Ruijuan Shen, Rui Jiang, and Youyun Xu. "Fairness‐aware power allocation in downlink MIMO‐NOMA systems." IET Communications 15, no. 9 (2021): 1143-1157.  DOI:  org/10.1049/cmu2.12149.
[25]Suprith, P. G., and Riyaz Ahmed Mohammed. "The Performance Evaluation of NOMA for 5G systems using Automatic Deployment of multi Users." International Journal of Electronics and Telecommunications 68 (2022). DOI:10.24425/ijet.2022.139887.
[26]Wang, Qiang, and Feng Zhao. "Joint spectrum and power allocation for NOMA enhanced relaying networks." IEEE Access 7 (2019): 27008-27016. DOI:10.1109/ACCESS.2019.2900225.