A Content based Image Retrieval Framework Using Color Descriptor

Full Text (PDF, 1424KB), PP.18-26

Views: 0 Downloads: 0

Author(s)

Abdelkhalak Bahri 1,* Hamid Zouaki 1

1. Couaib Doukkali University, faculty of Science, LAMI laboratory, El jadida, Morocco

* Corresponding author.

DOI: https://doi.org/10.5815/ijcnis.2016.01.03

Received: 12 Jul. 2015 / Revised: 20 Oct. 2015 / Accepted: 26 Nov. 2015 / Published: 8 Jan. 2016

Index Terms

Color, Signature, Thumbnails, EMD, CBIR

Abstract

In this work, we propose an image search method by visual content (CBIR), which is based on the color descriptor. The proposed method take account the spatial distribution of colors and make the signature partially invariant under rotation. The basic idea of our method is to use circular shift (clockwise or anti-clockwise direction) and mirror (horizontal direction and vertical direction respectively) matching scheme to measure the distance between signatures. Through some experiments, we show that this approach leads to a significant improvement in the quality of results.

Cite This Paper

Abdelkhalak Bahri, Hamid Zouaki, "A Content based Image Retrieval Framework Using Color Descriptor", International Journal of Computer Network and Information Security(IJCNIS), Vol.8, No.1, pp.18-26, 2016. DOI:10.5815/ijcnis.2016.01.03

Reference

[1]M.sWain, D.H.Ballard. Color indexing. International of computer vision, 32(11): 11-32. 1991
[2]Y. Rubner and C. Tomasi. Perceptual metrics for image database navigation. PhD thesis,Stanford University, 2001.
[3]J.L. Bently. Multidimensional binary search tree used for associative searching. M. Communications of ACM, pages 509–517, 1975
[4]Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision, 40(2):99–121, November 2000.
[5]M. Werman, S. Peleg, and A. Rosenfeld. A distance metric for multidimensional histograms. Computer Vision, Graphics and Image Processing, pages 328–336, 1985.
[6]R. Schettini, G. Ciocca, and S. Zuffi. A survey on methods for colour image indexing and retrieval in image databases. Color Imaging Science: Exploiting Digital Media, pages 183–211, 2001.
[7]M. Flickner, H. Niblack, W. Ashley, J. Dom, B. Gorkani, M. Hafner, D. Lee, J.and Petkovic, D. Steele, D. Yanker, and al. Query by image and video content: the qbic system. Computer, pages 23–32, 1995.
[8]J.R. Smith and C.S. Li. Image classification and querying using composite region templates. Computer Vision and Image Understanding, pages 165–174, 1999.
[9]J. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain, and C. Shu. Virage image search engine: an open framework for image management. Proceedings of SPIE, 1996.
[10]S. Mukherjea, K. Hirata, and Y. Hara. Amore: A world wide web image retrieval engine. World Wide Web, pages 115–132, 1999.
[11]A. Natsev, R. Rastogi, and K. Shim. Walrus: a similarity retrieval algorithm for image databases. Knowledge and Data Engineering,IEEE Transactions, pages 301–316, 2004.
[12]N. Boujemaa, J. Fauqueur, M. Ferecatu, F. Fleuret, V. Gouet, B. Saux, and H. Sahbi. Ikona : Interactive generic and specific image retrieval. Proceedings of the International workshop on Multimedia Content-Based Indexing and Retrieval (MMCBIR.2001), pages 25–28, 2001.
[13]A. Pentland, R. Picard, and S. Sclaroff. Photobook : tools for content-based manipulation of image databases. Proceedings of SPIE, 2003.
[14]C. Carson, S. Belongie, H. Greenspan, and J. MalikBlobworld. Image segmentation using expectation maximization and its application to image querying. IEEE Transaction on Pattern Analysis and Machine Intelligence, pages 1026–1038, 2002.
[15]J. Smith and S. Chang. Visualseek : a fully automated content-based image query system. Proceedings of the fourth ACM international conference on Multimedia, pages 87–98,1997.
[16]J. Wang, G. Wiederhold, O. Firschein, and S.X. Wei. Content-based image indexing and searching using daubechies’ wavelets. International Journal on Digital Libraries, pages 311–328, 1998.
[17]Y. Chen, M. Tsai, C. Cheng, P. Chan, and Y. Zhong. Perimeter intercepted length and color t-value as features for nature-image retrieval. Lecture Notes In Computer Science, 2007.
[18]Y. Gong. Image indexing and retrieval using color histogram. Multimedia Tools and Applications, Vol 2 :133–156, 1996.
[19]Y. HumWoo, J. DongSik, J. SehHwan, Park Jinhyung, and S. KwangSeop. Visual information retrieval via content-based approach. Pattern Recoggnition, pages 749–769, 2002.
[20]T. Hurtut, Y. Gousseau, and F. Schmitt. Adaptive image retrieval based on the spatial organization of colors. Computer Vision and Image Understanding, 112(2) :101–113, 2008.
[21]G. Wyszecki and W. Stiles. Color science: Concepts and methods, quantitative data and formulae. In 2nd Edition, 2000
[22]Ford, L. R. and Fulkerson, D. R. (1956). Solving the transportation problem. Management Science, 3 :24-32.
[23]S.A. Nene, S.K. Nayar, and H. Murase. Columbia object image library (coil-100). Technical Report CUCS, 1996
[24]Wang J.Z., Li J. and Wiederhold G. (2001) IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947-963.
[25]Xin Shu, Xiao-JunWu, A novel contour descriptor for 2D shape matching and its application to image retrieval, doi: 10.1016/j.imavis.2010.11.001, Image Video Computing , 2011.