Fast Identification Algorithm of Time-varying Modal Parameter Based on Two-layer Linear Neural Network Learning

Full Text (PDF, 464KB), PP.44-51

Views: 0 Downloads: 0

Author(s)

Yang Kai 1,* Yu Kaiping 1

1. Department of Astronautical Science and Mechanics Harbin Institute of Technology Harbin, 150001, Heilongjiang, China

* Corresponding author.

DOI: https://doi.org/10.5815/ijem.2011.06.07

Received: 4 Aug. 2011 / Revised: 15 Sep. 2011 / Accepted: 27 Oct. 2011 / Published: 5 Dec. 2011

Index Terms

Subspace tracking, time-varying modal parameter, identification algorithm, neural network learning

Abstract

The key of fast identification algorithm of time-varying modal parameter based on subspace tracking is to find efficient and fast subspace-tracking algorithm. This paper presents a new version of NIC(Novel Information Criterion) using two-layer linear neural network learning for subspace tracking. Comparing with the original algorithm, there is no need to set a key control parameter in advance. Simulation experiments show that new algorithm has a faster convergence in the initial period.

Cite This Paper

Yang Kai,Yu Kaiping,"Fast Identification Algorithm of Time-varying Modal Parameter Based on Two-layer Linear Neural Network Learning", IJEM, vol.1, no.6, pp.44-51, 2011. DOI: 10.5815/ijem.2011.06.07

Reference

[1] Zou Jingxiang, Yu Kaiping and Pang Shiwei. Methods of time-varying structural parameter identification[J]. Advances in mechanics, 2000, 30(3):370-377

[2] Kefu Liu . Extension of modal analysis to linear time-varying system[J] . Journal of Sound and Vibration, 1999, 226(1):149-167

[3] Kefu Liu . Identification of linear time-varying system[J] . Journal of Sound and Vibration, 1997,206(4):487-505

[4] Juang J N and Pappa R S . An eigensystem realization algorithm for modal parameter identification and model reduction[J] . Journal of Guidance, Control and Dynamic, 1985,8(5):620-627

[5] Longman R W and Juang J N . Recursive form of the Eigensystem Realization algorithm for system identification[J] . Journal of Guidance, Control and Dynamic, 1989, 12(5):647-652

[6] Yu Kaiping, Xie Lili, Fan Jiuming et.al . A parameter identification of simple supported beams system carrying a moving mass[J] . Earthquake engineering and engineering vibration, 2002, 22(5):14-17

[7] Pang Shiwei, Yu Kaiping and Zou Jingxiang . Improved subspace method with application in linear tie-varying structural modal parameter indentification[J] . Chinese Journal of applied mechanics, 2005, 22(2):184-189

[8] Yang Lifang, Yu Kaiping, Pang Shiwei et. al . Comparison study on identification methods applied to linear time-varying structures[J] . Journal of Vibration and Shock, 2007,26(3):8-12

[9] F Tasker, A Bosse, S Fisher . Real-time modal parameter estimation using subspace methods:theory[J] . Mechanical Systems and Signal Processing,1998,12(6):797-808

[10] A Bosse, F Tasker, S Fisher . Real-time modal parameter estimation using subspace methods: application[J] . Mechanical Systems and Signal Processing, 1998, 12(6):809-823

[11] E M Dowling, L P Ammann and R D Degroat . A TQR-iteration based adaptive SVD for real time angel and frequency tracking[J] . IEEE Transactions on Signal Processing, 1994,42(4):914-926

[12] Wu Riqiang, Yu Kaiping and Zou Jingxiang . An improved subspace method and its application to parameter identification of time-varying structures[J] . Engineering Mechaics,2002,19(4):67-70

[13] Pang Shiwei, Yu Kaiping and Zou Jingxiang . A projection approximation recursive subspace method for identification of modal parameter of time-varying structures[J] . Engineering Mechanics, 2002, 22(5):115-119

[14] Pang Shiwei, Yu Kaiping and Zou Jingxiang . Time-varying system identification using recursive subspace method based on free response data[J] . Journal of Vibration Engineering,2005, 18(2):233-237

[15] Bin Yang . Projection Approximation subspace tracking[J] . IEEE Transactions of Signal Processing, 1995, 43(1):95-107

[16] K Abed-Meraim, A Chkeif and Y Hua . Fast orthonormal PAST algorithm[J] . IEEE Signal Processing Letters, 2000, 7(3):60-62

[17] Bin Yang . An extension of the PASTd algorithm to both rank and subspace tracking[J] . IEEE Signal Processing Letters, 1995, 2(9):179-182

[18] Imran Ali, Doug Nyun Kim and Taikyeong Ted Jeong . A new subspace tracking algorithm using approximation of Gram-Schmidt procedure . In: 2009 International Conference on Information and Multimedia Technology, 2009, 245-248

[19] Yingbo Hua, Yong Xiang, Tianping Chen and so on . A new look at the power method for fast subspace tracking [J]. Digital Signal Processing, 1999,9:297-314

[20] Roland Badeau, Bertrand David and Gael Richard . Fast approximated power iteration subspace tracking[J] . IEEE Transactions on Signal Processing, 2005, 53(8):2391-2341

[21] Yongfeng Miao and Yingbo Hua . Fast Subspace Tracking by a Novel Information Criterion . Signals, Systems and Computer, the Thirty-First Asilomar Conference, 1997, vol2:1312-1316

[22] Yongfeng Miao and Yingbo Hua . Fast Subspace Tracking and Neural Network Learing by a Novel Information Criterion . IEEE Transactions on Signal Processing, 1998,46(7):1967-1979

[23] Amir Valizadeh, Mehdi Farrokhrooz and Ali Rafiei . Fast Signal Subspace Tracking Using Two-Layer Linear Neural Network Learning. 16th Mediterranean Conference on Control and Automation . France, 2008:1828-1832

[24] E Esmailzadeh and M Ghorashi . Vibraton analysis of beams traversed by uniform partially distributed moving masses[J] . Journal of Sound and Vibration, 1995, 184(1):9-17