International Journal of Engineering and Manufacturing (IJEM)

ISSN: 2305-3631 (Print)

ISSN: 2306-5982 (Online)

DOI: https://doi.org/10.5815/ijem

Website: https://www.mecs-press.org/ijem

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 77

(IJEM) in Google Scholar Citations / h5-index

IJEM is committed to bridge the theory and practice of engineering and manufacturing. From innovative ideas to specific algorithms and full system implementations, IJEM publishes original, peer-reviewed, and high quality articles in the areas of engineering and manufacturing. IJEM is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of engineering and manufacturing applications.

 

IJEM has been abstracted or indexed by several world class databases: Google Scholar, Microsoft Academic Search, Baidu Wenku, Open Access Articles, Scirus, CNKI, CrossRef, JournalTOCs, etc..

Latest Issue
Most Viewed
Most Downloaded

IJEM Vol. 15, No. 1, Feb. 2025

REGULAR PAPERS

Racial Bias in Facial Expression Recognition Datasets: Evaluating the Impact on Model Performance

By Ridwan O. Bello Joseph D. Akinyemi Khadijat T. Ladoja Oladeji P. Akomolafe

DOI: https://doi.org/10.5815/ijem.2025.01.01, Pub. Date: 8 Feb. 2025

Despite extensive research efforts in Facial Expression Recognition (FER), achieving consistent performance across diverse datasets remains challenging. This challenge stems from variations in imaging conditions such as head pose, illumination, and background, as well as demographic factors like age, gender, and ethnicity. This paper introduces NIFER, a novel facial expression database designed to address this issue by enhancing racial diversity in existing datasets. NIFER comprises 3,455 images primarily featuring individuals with dark skin tones, collected in real-world settings. These images underwent preprocessing through face detection and histogram equalization before being categorized into five basic facial expressions using a deep learning model. Experiments conducted on both NIFER and FER-2013 datasets revealed a decrease in performance in multiracial FER compared to single-race FER, underscoring the importance of incorporating diverse racial representations in FER datasets to ensure accurate recognition across various ethnicities.

[...] Read more.
A Comprehensive Bibliometric Study on Machine Learning Based Rehabilitation and Stroke Research (1999 - 2022)

By Tasfia Tahsin Humayra Akter Uzzal Biswas Jun Jiat Tiang Abdullah-Al Nahid

DOI: https://doi.org/10.5815/ijem.2025.01.02, Pub. Date: 8 Feb. 2025

In recent years, the rising prevalence of chronic illness has led to an increase in disability of patients. Extensive research has been done to enhance both the functional abilities as well as the quality of the affected individuals’ lives. Researchers have worked on the effects of numerous scholars, keywords and countries of these specific fields. However, a few state-of-the-art bibliometric analyses have been done in this research to reduce the quantitative aspects of the vast research fields of rehabilitation. We have precisely selected 427 core papers from the Web of Science database spanning from 1999 to 2022 where Machine Learning (ML) or Deep Learning (DL) is used in the rehabilitation field. Consequently, our analysis focuses on citation patterns, trend analysis and collaborations between countries or influential keywords offering a detailed overview of global trends in this interdisciplinary domain. Additionally, we visualize the research trends of various authors and countries which provide invaluable insights into research impact as well as collaboration networks. Overall, this paper aims to shape the evolving field of rehabilitation by providing in depth analysis of the citation landscape, key researchers, and international collaborations.    

[...] Read more.
Development of Design Catalogue and Sustainability Analysis of GRT and SBS: A Comparative Study between Hungarian and Pakistani Pavement Design Codes

By Sheeraz Ahmed Rahu Janos Szendefy Munesh Meghwar

DOI: https://doi.org/10.5815/ijem.2025.01.03, Pub. Date: 8 Feb. 2025

The aim of the paper is the development of a design catalog and sustainability analyses of road layers. In this paper, the material and thickness of the layers for three different traffic load classes will be determined based on the pavement design of the Hungarian and Pakistani standards. This was achieved using the Hungarian design method and the AASHTO method adopted by the National Highway Authority in Pakistan. "This will enable engineers in the field to choose pre-established designs from the catalog.". The forefront of pavement design is the direction in which ongoing research endeavors in the field are guiding us. The empirical design, as outlined in the AASHTO 1993 version, relies on statistical models derived from road tests. Moving beyond this, the mechanistic-empirical design involves assessing stresses and strains alongside empirical models, such as the MEPDG approach. Looking ahead, a mechanistic design encompasses models based on mechanics and represents the frontier where researchers are advancing the future of pavement design. The Hungarian pavement design method (eÚT 2-1.202:2005, 2005) primarily relies on mechanistic-empirical pavement design principles. However, it limits practicing engineers to choosing predefined designs from the catalog. The Comparison was carried out between Hungarian and Pakistani pavement designs. Subsequently, comparative calculations between GRT and SBS will be made for CO2 emissions and other sustainability parameters. To achieve this aim, the Pavement LCA tool by the US Department of Transportation Federal Highway Administration was employed.

[...] Read more.
Breast Cancer Diagnosis Improvement Based Deep Learning

By Ibraheem H. Al-Dosari

DOI: https://doi.org/10.5815/ijem.2025.01.04, Pub. Date: 8 Feb. 2025

Background: Globally, Breast cancer is the utmost predominant cancer and it affects millions of women every year. Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) has been familiar as an efficient modality for diagnosing breast cancer. In spite of DCE-MRI modality being majorly utilized for the classification of breast cancer, the diagnostic performance is still deficient and misclassification occurs. 
Method: This research proposes the Deep Learning (DL) approach of Dual Attention Deep Convolutional Neural Network (DADCNN) for the classification of breast cancer into two types named benign and malignant. Initially, the DCE-MRI, Rider Breast MRI and Breast MRI datasets are utilized for estimating the effectiveness of the classifier. After collecting the dataset, pre-processing is performed by utilizing data augmentation technique. Then, the augmented data is input for the feature extraction process, which is performed by using DenseNet-121 and ResNet-101 architectures. Then, the extracted features are concatenated by using the feature fusion model and finally, classification is performed to categorize the breast cancer. The DADCNN approach deals with the long input features to selectively focus on the most relevant parts in breast cancer, so it enhances the results. The presented DADCNN approach significantly outperforms the existing methods like MUM-Net-joint prediction, UDFS + SVM, XGBoost, Multivariate Rocket and BI-RADS. The greater accuracy of the proposed DACNN approach suggests DL approach to effectively enhance the classification accuracy in breast cancer.
Results: The experimental results establish that the proposed method attains greater results in all performance metrics as compared to the exiting methods like Multi-modality Network (MUM-Net) and Multivariate Rocket algorithm, The suggested DADCNN approach attains the maximum accuracy of 0.931, specificity of 0.924, sensitivity of 0.925, AUC of 0.962, PPV of 0.853 and NPV of 0.902 in breast cancer classification, which denotes that the DACNN effectively classify the cancer into benign and malignant.  
Concluding Remarks: The DADCNN approach deals with the long input features to selectively focus on the most relevant parts in breast cancer, so it enhances the accuracy, specificity, sensitivity, AUC, PPV and NPV in breast cancer classification. 

[...] Read more.
Wireless Vehicular Communication

By Saranya M. Archana N.

DOI: https://doi.org/10.5815/ijem.2025.01.05, Pub. Date: 8 Feb. 2025

The proposal entitled as “Wireless Vehicular Communication” deals with communication between vehicles and infrastructural units. This proposal is designed to enable communication between vehicles and the surrounding infrastructure, such as traffic signals and road sensors. The aim of this project is to improve traffic flow, reduce congestion and enhance overall road safety. This project primarily aims at providing instantaneous communication between two vehicles or between vehicles and infrastructure to ensure safety of the passenger. This system is also known as Crucial Message Exchange System (CMES). CMES not only helps in message transmission but also in collection, storage and monitoring of the messages. This system processes data and has the ability to extract crucial information for future machine language-based processing. The CMES system uses the ESP8266 module as the on-board unit in a vehicle to implement Vehicle to Infrastructure Communication (V2I). This module interacts with the Raspberry Pi board using Message Queue Telemetry Transport (MQTT) protocol to relay information. The Raspberry Pi board is considered as the embedded unit in the infrastructure. Raspberry Pi not only facilitates the collection of data but also is responsible for storage and retrieval in cloud systems. All the said components working together ensures a reliable message passing system which will be of immense help to the drivers/passengers on road.

[...] Read more.
Machine Learning Approaches for Cancer Detection

By Ayush Sharma Sudhanshu Kulshrestha Sibi B Daniel

DOI: https://doi.org/10.5815/ijem.2018.02.05, Pub. Date: 8 Mar. 2018

Accurate prediction of cancer can play a crucial role in its treatment. The procedure of cancer detection is incumbent upon the doctor, which at times can be subjected to human error and therefore leading to erroneous decisions. Using machine learning techniques for the same can prove to be beneficial. Many classification algorithms such as Support Vector Machines (SVM) and Artificial Neural Networks (ANN) are proven to produce good classification accuracies. The following study models data sets for breast, liver, ovarian and prostate cancer using the aforementioned algorithms and compares them. The study covers data from condition of organs, which is called standard data and from gene expression data as well. This research has shown that SVM classifier can obtain better performance for classification in comparison to the ANN classifier.

[...] Read more.
Gas Leakage Detector and Monitoring System

By Nureni Asafe Yekini Adigun J. Oyeranmi Oloyede A. Olamide Akinade O. Abigael

DOI: https://doi.org/10.5815/ijem.2022.05.05, Pub. Date: 8 Oct. 2022

Leakage of gas is a major issue in the industrial sector, residential buildings, and gas-powered vehicles, one of the preventive methods to stop accidents associated with gas leakage is to install gas leakage detection devices. The focus of this work is to propose a device that can detect gas leakage and alert the owners to avert problems due to gas leakages. The system is based on a microcontroller that employs a gas sensor as well as a GSM module, an LCD display, and a buzzer. The system was designed for gas leakage monitoring and alerts with SMS via an Arduino microcontroller with a buzzer and an MQ2 gas sensor. The circuit contains a Microcontroller MQ2 gas sensor, buzzer, LCD display, and GSM module, when the sensor detects gas leakage it transmit the information to the Microcontroller while the microcontroller makes a decision and then forwarded a warning message to the user as SMS to a mobile phone for decision to be taken accordingly. The output of this research will be significant in averting problems associated with gas leakages now and in future. 

[...] Read more.
Big Data in Cyber-Physical Systems, Digital Manufacturing and Industry 4.0

By Lidong Wang Guanghui Wang

DOI: https://doi.org/10.5815/ijem.2016.04.01, Pub. Date: 8 Jul. 2016

A cyber physical system (CPS) is a complex system that integrates computation, communication, and physical processes. Digital manufacturing is a method of using computers and related technologies to control an entire production process. Industry 4.0 can make manufacturing more efficient, flexible, and sustainable through communication and intelligence; therefore, it can increase the competitiveness. Key technologies such as the Internet of Things, cloud computing, machine-to-machine (M2M) communications, 3D printing, and Big Data have great impacts on Industry 4.0. Big Data analytics is very important for cyber-physical systems (CPSs), digital manufacturing, and Industry 4.0. This paper introduces technology progresses in CPS, digital manufacturing, and Industry 4.0. Some challenges and future research topics in these areas are also presented.

[...] Read more.
Towards the Development a Cost-effective Earthquake Monitoring System and Vibration Detector with SMS Notification Using IOT

By Shaina Delia G. Tomaneng Jubert Angelo P. Docdoc Susanne A. Hierl Patrick D. Cerna

DOI: https://doi.org/10.5815/ijem.2022.06.03, Pub. Date: 8 Dec. 2022

As one of the countries situated in the Pacific Ring of Fire, the Philippines suffers from an inexhaustible number of natural disasters every year. One of the most destructible ones is the occurrence of earthquakes. Because of the high damage that earthquakes incur, along with their inevitability and unpredictability, developing effective methods of earthquake damage mitigation as well as disaster preparedness is imperative to lessen the negative impacts it is capable of producing in communities. One efficient way of doing this is by implementing an earthquake early warning (EEW) system that is capable of sending message alerts to receivers to warn them in the event of a hazardous earthquake. With this objective, this study centers on creating an earthquake detector with SMS messaging to function as an EEW system with an added advantage of being low-cost to make it more accessible to the public. Using electronic components based on an Arduino Mega 2560 and a Global System for Mobile Communications (GSM) module, the earthquake detector and its alert message system were created. A series of tests in different locations across Butuan City was then performed to assess the device’s accuracy in measuring different Intensity levels when subjected to surface vibrations. Comparative analysis showed that its recorded values. Corresponded with the values obtained from accelerometer-based mobile applications. In conclusion, the study was deemed functional in its ability to detect low and high surface vibrations, which proves that it is successful in detecting earthquake tremors and vibrations in the event of an earthquake.

[...] Read more.
Automatic plant Irrigation Control System Using Arduino and GSM Module

By S. Akwu U. I. Bature K. I. Jahun M. A. Baba A. Y. Nasir

DOI: https://doi.org/10.5815/ijem.2020.03.02, Pub. Date: 8 Jun. 2020

The evolving information technology abridges the hardship in the daily life of consumers all over the world, hence the application of this knowledge in the irrigation field is necessary nowadays. The exponential growth of demand in food is due to the ever-evolving population of the world, thus it becomes necessary to expand the present area of cultivation. Considering the present situation of weather change due to global warming as a result of industrial activities, farming via irrigation is the reliable process of food production. Water remains the only source for survival for crop production, thus optimal management and proper use of water become pertinent with the ever-increasing land for irrigation. Arduino based automatic plant irrigation control system; provides a simple approach to automated irrigation. This work makes use of the GSM module for the notification of the user about the situation in the farm, this project aims to design and implement an automatic plant irrigation control system using Arduino and GSM module. In this proposed system, there are two main parts hardware and software units. Mechanical units which are the hardware unit comprises of instrumentation systems and watering irrigation systems. The equipment system is based on microcontroller, flow meter, moisture sensor, LCD, and GSM module. The software part comprises of C++ code, this is to enable the linkage between various modules. The main control of this system is the microcontroller unit that serves as the brain for coordinating control for various modules of the system, it synchronizes and operates the watering system and notifies the user about the condition of the field and watering section via GSM module. Implementation of this project will significantly help in a water-saving of about 30 – 50% as compared to the conventional watering system like the sprinkler, improve growth and discourage weeds because water will only be served to the needed area, simple method and timer-based system for automatic watering can be incorporated for efficiency.

[...] Read more.
Reliability Analysis Techniques in Distribution System: A Comprehensive Review

By Prakash Kafle Manila Bhandari Lalit B. Rana

DOI: https://doi.org/10.5815/ijem.2022.02.02, Pub. Date: 8 Apr. 2022

Quality of electricity with continuity is the reliability of the power system which is inversely proportional with the duration of power supply interruption. It depends on some expected or unexpected faults/failures on the systems, speed of protecting systems, preventive maintenance, and motivation of technical staffs. The detailed study of the distribution system is more crucial as its reliability is the concern of utility’s fame, service, customers’ satisfactions and reflects to the overall revenue. The relevant articles from the various sources has been collected and analyzed different reliability indices with their significance. Also, to realize the methodology related with reliability analysis, a comparative study among its different components has been carried out and the best techniques for maintaining system reliability are suggested.

[...] Read more.
Development of a Low-Cost Air Quality Data Acquisition IoT-based System using Arduino Leonardo

By Louis Anton A. Cruz Maria Teresa T. Grino Thea Marie V. Tungol Joel T. Bautista

DOI: https://doi.org/10.5815/ijem.2019.03.01, Pub. Date: 8 May 2019

Air pollution is responsible for an estimated 5.5 million deaths in 2013 which costed the global economy approximately US$225 billion in lost labor income. To address the problems caused by air pollution, this study aims to develop a low-cost and portable air quality monitoring system that detects the levels of CO, PM2.5, PM10, temperature, and humidity. Using Internet of Things (IoT), the data that the system gathers can be accessed through the internet. Moreover, the system assesses the obtained data through a comparative analysis with the AQI. The Iterative Design Loop method was used in the development of the air quality monitoring system. Furthermore, the sensors were programmed using the Arduino Integrated Development Environment (IDE). Using the Welch’s t-test, it was found that the obtained data of the system is not significantly different to that of the standard air quality monitoring systems. To achieve more accurate data from the developed system, the raw data of the developed and standard system were calibrated through an equation from the trendline. Through the use of Acer CloudProfessor, the study successfully developed an air quality monitoring system that can be accessed through the internet.

[...] Read more.
Fully Automated Hydroponics System for Smart Farming

By Hariram M Shetty Kshama Pai K Navaneeth Mallya Pratheeksha

DOI: https://doi.org/10.5815/ijem.2021.04.04, Pub. Date: 8 Aug. 2021

This project is focused on developing a Fully Automatic Hydroponics system which helps in monitoring and controlling temperature, Humidity, pH and EC in Hydroponics. Hydroponics is a method of growing crops without soil. Plants are grown in rows or on trellises, just like in a traditional garden, but they have their roots in water rather than in dirt. Although, there are different ways in which hydroponics can be implemented, there is no individual system which can measure and control pH and EC level of nutrient solution along with its surrounding temperature and humidity automatically. We use PIC16F877A microcontroller and four pumps, three of which are used to pump water, nutrient solution, pH solution and the fourth pump is used to control the humidity. A fan is used to control the temperature which increases its speed as the temperature increases. The pumps are turned on depending on the EC and pH values obtained from the electrodes. A passive LCD display is used to display variations in the values. Different Analysis like water usage, plant growth in comparison with regular farming method and hydroponics is successfully completed which results in hydroponics system is significant method in comparison with soiled cultivation method in terms of yield and water usage. This project is expected to produce high yield crops by taking minimal space, makes work easier for farmers in growing of plants, and also consumes less amount of water when compared to traditional method resulting in conservation of water.

[...] Read more.
Smart Home Automation Using IOT and its Low Cost Implementation

By Syed Kashan Ali Shah Waqas Mahmood

DOI: https://doi.org/10.5815/ijem.2020.05.03, Pub. Date: 8 Oct. 2020

The use of automation is emerging with the help of internet providing possibility of objects to work it-self. With recent advancements to the fast speed internet, IoT will be playing a vital role in our daily tasks in present and future. IoT is offering feasibility and effectiveness to the system that are based upon it. These modern technologies are creating comfort and standard way of living because of its time, energy and cost efficiency. In this modern world, where things are going to be on our finger tips, our daily household appliances will also be controlled with our smartphones. This will allow us to manage the usage smartly, and can help in building of an eco-friendly environment. This paper will conduct a study based on how household appliances may be automated smartly with software applications that are integrated with hardware board. It presents the complete architecture of the system with its working capabilities. Also, it explains the internal mechanism of the system which mainly considers the software application and hardware board interaction. As we know the smart home automation is a costly process, so in this paper we would be looking at its low-cost implementation.

[...] Read more.
A Review on Stabilization of Soft Soils with Geopolymerization of Industrial Wastes

By Tadesse A. Wassie Gokhan Demir

DOI: https://doi.org/10.5815/ijem.2023.02.01, Pub. Date: 8 Apr. 2023

Geopolymers are inorganic aluminosilicate polymers that solidify into ceramic-like substances at tempera-tures close to ambient. The elements in silicate oxide (SiO2) and aluminum oxide (Al2O3) are essential for the hardening of geopolymers because they combine with other elements to create N-A-S-H formation, which gives the material its distinctive strength. Geopolymers based on industrial wastes are increasingly being used to stabilize soft soils. Fly ash, GGBS, metakaolin, glass powders, and others are a few of the industrial wastes that aid in synthesizing geopolymers. Several experimental studies were carried out to determine the mechanical strength, durability, and microstructure im-provement of soft soils stabilized with geopolymers. Some of the experiments include X-ray diffraction (XRD), scan-ning electron microscopy (SEM), unconfined compression testing (UCS), and durability testing. The main objective of this review was to assess the different types of binders, binder ratios, alkali activator types, alkali activator concentra-tions, and other parameters used in synthesizing geopolymers. The binder's proportion varies between 5% and 30% of the soil's dry weight. Researchers commonly use sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution for the alkali activator. Since the unconfined compression test is one of the quickest and least expensive ways to determine shear strength, most researchers were used to measure stabilized soils' mechanical strength. This paper highlights the most frequently used industrial wastes used to synthesize geopolymers. The review enables researchers to acquire es-sential and complementary inputs for future research.

[...] Read more.
Machine Learning Approaches for Cancer Detection

By Ayush Sharma Sudhanshu Kulshrestha Sibi B Daniel

DOI: https://doi.org/10.5815/ijem.2018.02.05, Pub. Date: 8 Mar. 2018

Accurate prediction of cancer can play a crucial role in its treatment. The procedure of cancer detection is incumbent upon the doctor, which at times can be subjected to human error and therefore leading to erroneous decisions. Using machine learning techniques for the same can prove to be beneficial. Many classification algorithms such as Support Vector Machines (SVM) and Artificial Neural Networks (ANN) are proven to produce good classification accuracies. The following study models data sets for breast, liver, ovarian and prostate cancer using the aforementioned algorithms and compares them. The study covers data from condition of organs, which is called standard data and from gene expression data as well. This research has shown that SVM classifier can obtain better performance for classification in comparison to the ANN classifier.

[...] Read more.
Reliability Analysis Techniques in Distribution System: A Comprehensive Review

By Prakash Kafle Manila Bhandari Lalit B. Rana

DOI: https://doi.org/10.5815/ijem.2022.02.02, Pub. Date: 8 Apr. 2022

Quality of electricity with continuity is the reliability of the power system which is inversely proportional with the duration of power supply interruption. It depends on some expected or unexpected faults/failures on the systems, speed of protecting systems, preventive maintenance, and motivation of technical staffs. The detailed study of the distribution system is more crucial as its reliability is the concern of utility’s fame, service, customers’ satisfactions and reflects to the overall revenue. The relevant articles from the various sources has been collected and analyzed different reliability indices with their significance. Also, to realize the methodology related with reliability analysis, a comparative study among its different components has been carried out and the best techniques for maintaining system reliability are suggested.

[...] Read more.
Automated Wall Painting Robot for Mixing Colors based on Mobile Application

By Ayman Abdullah Ahmed Al Mawali Shaik Mazhar Hussain

DOI: https://doi.org/10.5815/ijem.2023.01.04, Pub. Date: 8 Feb. 2023

The final stage, which is the building paint or the adopted design, is where most real estate developers and constructors struggle. Where extensive painting is required, which takes a lot of time, effort, and accuracy from the firm doing the work. Additionally, it might be challenging to decide on the precise color grades for the design and calculate the right amount of paint to use for the job. Where these activities are extremely expensive, and the complex implementation is accompanied by worries and skepticism. These are the motivations behind the development of painting machines that blend colors. Artificial intelligence is used in the machine's design to make it efficient and quick at what it does. High accuracy is needed when selecting the proper colors, and this machine is distinguished by its ability to select the proper color tone. The color sensor (TCS34725 RGB) determines the relevance and accuracy of the desired color by comparison with the system database with the assistance of the light sensor (STM32), which measures the degree of illumination of the chosen place. By combining basic colors, this technique saves the customer the hassle of looking at specialized stores for the level of color they require. By giving the system the codes assigned to each color, it may also blend colors. The system also has the feature of controlling the machine remotely via smart phone application by enabling bluetooth and wifi features.

[...] Read more.
Neural Networks-based Process Model and its Integration with Conventional Drum Level PID Control in a Steam Boiler Plant

By Douglas T. Mugweni Hadi Harb

DOI: https://doi.org/10.5815/ijem.2021.05.01, Pub. Date: 8 Oct. 2021

Controlling drum level is a major and crucial control objective in thermal power plant steam boilers. The drum level as a controlled variable is highly characterized by complex non-linear process dynamics as well as measurement noise and long-time delays. Developing a data-driven process model is particularly advantageous as it could be built from ongoing operational data. Such a model could be used to assist existing controllers by providing predictions regarding the drum level. The aim of this paper is to develop such a model and to propose a control architecture that can be easily integrated into existing control hardware. For that purpose, different neural networks are used, Multilayer Perceptron (MLP), Nonlinear Autoregressive Exogenous (NARX), and Long Short Term (LSTM) neural networks. LSTM and MLP were able to capture the dynamics of the process, but LSTM showed superior performance. The results demonstrate that the use of traditional machine learning criteria to evaluate a process model is not necessarily adequate. Using the model in an open-loop and a closed-loop simulation is more suitable to test its ability to capture the dynamics of the process. A novel architecture that integrates the process model within an existing closed-loop controller is proposed. The architecture uses adaptive weights to ensure that a good model is given more influence than a bad model on the controller’s output.

[...] Read more.
Fire and Motion Early Warning Device: Its Design and Development

By Ronnie Camilo F. Robles Ruth G. Luciano Rolaida L. Sonza Arnold P. Dela Cruz Mariel Cabrillas

DOI: https://doi.org/10.5815/ijem.2021.06.01, Pub. Date: 8 Dec. 2021

Cases of theft and robbery of computers, CCTV equipment, and LCD projector have become more frequent in schools. In addition, fire hazards are great threat to educational institutions where expensive learning materials are kept. Such incidents could be lessened and avoided if schools are equipped with appropriate security systems capable of monitoring and informing people about the coming possible danger. Thus, the development of Fire and Motion Early Warning Device (FMEWD) is timely and relevant. FMEWD consists of a website and interconnected devices and sensors intended to provide an efficient and effective warning system for preventing incidents relating to fire, smoke, and intrusion within an office. Upon detection, the system automatically sends an email and SMS to registered users. This study used the Agile Development Model which allows features to be delivered quickly and more frequently with higher levels of predictability. Evidently, the integration of different technologies conceptualized by the researcher addresses the pressing security concerns faced by educational institutions like NEUST.

[...] Read more.
Fully Automated Hydroponics System for Smart Farming

By Hariram M Shetty Kshama Pai K Navaneeth Mallya Pratheeksha

DOI: https://doi.org/10.5815/ijem.2021.04.04, Pub. Date: 8 Aug. 2021

This project is focused on developing a Fully Automatic Hydroponics system which helps in monitoring and controlling temperature, Humidity, pH and EC in Hydroponics. Hydroponics is a method of growing crops without soil. Plants are grown in rows or on trellises, just like in a traditional garden, but they have their roots in water rather than in dirt. Although, there are different ways in which hydroponics can be implemented, there is no individual system which can measure and control pH and EC level of nutrient solution along with its surrounding temperature and humidity automatically. We use PIC16F877A microcontroller and four pumps, three of which are used to pump water, nutrient solution, pH solution and the fourth pump is used to control the humidity. A fan is used to control the temperature which increases its speed as the temperature increases. The pumps are turned on depending on the EC and pH values obtained from the electrodes. A passive LCD display is used to display variations in the values. Different Analysis like water usage, plant growth in comparison with regular farming method and hydroponics is successfully completed which results in hydroponics system is significant method in comparison with soiled cultivation method in terms of yield and water usage. This project is expected to produce high yield crops by taking minimal space, makes work easier for farmers in growing of plants, and also consumes less amount of water when compared to traditional method resulting in conservation of water.

[...] Read more.
Gas Leakage Detector and Monitoring System

By Nureni Asafe Yekini Adigun J. Oyeranmi Oloyede A. Olamide Akinade O. Abigael

DOI: https://doi.org/10.5815/ijem.2022.05.05, Pub. Date: 8 Oct. 2022

Leakage of gas is a major issue in the industrial sector, residential buildings, and gas-powered vehicles, one of the preventive methods to stop accidents associated with gas leakage is to install gas leakage detection devices. The focus of this work is to propose a device that can detect gas leakage and alert the owners to avert problems due to gas leakages. The system is based on a microcontroller that employs a gas sensor as well as a GSM module, an LCD display, and a buzzer. The system was designed for gas leakage monitoring and alerts with SMS via an Arduino microcontroller with a buzzer and an MQ2 gas sensor. The circuit contains a Microcontroller MQ2 gas sensor, buzzer, LCD display, and GSM module, when the sensor detects gas leakage it transmit the information to the Microcontroller while the microcontroller makes a decision and then forwarded a warning message to the user as SMS to a mobile phone for decision to be taken accordingly. The output of this research will be significant in averting problems associated with gas leakages now and in future. 

[...] Read more.
Towards the Development a Cost-effective Earthquake Monitoring System and Vibration Detector with SMS Notification Using IOT

By Shaina Delia G. Tomaneng Jubert Angelo P. Docdoc Susanne A. Hierl Patrick D. Cerna

DOI: https://doi.org/10.5815/ijem.2022.06.03, Pub. Date: 8 Dec. 2022

As one of the countries situated in the Pacific Ring of Fire, the Philippines suffers from an inexhaustible number of natural disasters every year. One of the most destructible ones is the occurrence of earthquakes. Because of the high damage that earthquakes incur, along with their inevitability and unpredictability, developing effective methods of earthquake damage mitigation as well as disaster preparedness is imperative to lessen the negative impacts it is capable of producing in communities. One efficient way of doing this is by implementing an earthquake early warning (EEW) system that is capable of sending message alerts to receivers to warn them in the event of a hazardous earthquake. With this objective, this study centers on creating an earthquake detector with SMS messaging to function as an EEW system with an added advantage of being low-cost to make it more accessible to the public. Using electronic components based on an Arduino Mega 2560 and a Global System for Mobile Communications (GSM) module, the earthquake detector and its alert message system were created. A series of tests in different locations across Butuan City was then performed to assess the device’s accuracy in measuring different Intensity levels when subjected to surface vibrations. Comparative analysis showed that its recorded values. Corresponded with the values obtained from accelerometer-based mobile applications. In conclusion, the study was deemed functional in its ability to detect low and high surface vibrations, which proves that it is successful in detecting earthquake tremors and vibrations in the event of an earthquake.

[...] Read more.
Interpolation Method for Identification of Brain Tumor from Magnetic Resonance Images

By Sugandha Singh Vipin Saxena

DOI: https://doi.org/10.5815/ijem.2023.02.05, Pub. Date: 8 Apr. 2023

During the past years, it is observed from the literature that, identification of the brain tumor identification in human being is gaining popularity. Diagnosing any disease without manual interaction with great accuracy makes computer science research more demanding, therefore, the present work is related to identify the tumor clots in the affected patients. For this purpose, a well-known Safdarganj Hospital, New Delhi, India is consulted and 2165 Magnetic Resonance Images (MRI) of a single patient are collected through scanning, and interpolation technique of numerical method used to identify the accurate position of the brain tumor. A system model is developed and implemented by the use of Python programming language and MATLAB for the identification of affected areas in the form of a contour of a patient. The desired accuracy and specificity are evaluated using the computed results and also presented in the form of graphs.

[...] Read more.
A Review on Stabilization of Soft Soils with Geopolymerization of Industrial Wastes

By Tadesse A. Wassie Gokhan Demir

DOI: https://doi.org/10.5815/ijem.2023.02.01, Pub. Date: 8 Apr. 2023

Geopolymers are inorganic aluminosilicate polymers that solidify into ceramic-like substances at tempera-tures close to ambient. The elements in silicate oxide (SiO2) and aluminum oxide (Al2O3) are essential for the hardening of geopolymers because they combine with other elements to create N-A-S-H formation, which gives the material its distinctive strength. Geopolymers based on industrial wastes are increasingly being used to stabilize soft soils. Fly ash, GGBS, metakaolin, glass powders, and others are a few of the industrial wastes that aid in synthesizing geopolymers. Several experimental studies were carried out to determine the mechanical strength, durability, and microstructure im-provement of soft soils stabilized with geopolymers. Some of the experiments include X-ray diffraction (XRD), scan-ning electron microscopy (SEM), unconfined compression testing (UCS), and durability testing. The main objective of this review was to assess the different types of binders, binder ratios, alkali activator types, alkali activator concentra-tions, and other parameters used in synthesizing geopolymers. The binder's proportion varies between 5% and 30% of the soil's dry weight. Researchers commonly use sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution for the alkali activator. Since the unconfined compression test is one of the quickest and least expensive ways to determine shear strength, most researchers were used to measure stabilized soils' mechanical strength. This paper highlights the most frequently used industrial wastes used to synthesize geopolymers. The review enables researchers to acquire es-sential and complementary inputs for future research.

[...] Read more.