Optimized Ambipolar Characteristics in Charge Plasma-Doped InGaAs/GaAs TFET Biosensors with Dual Metal Gate

PDF (584KB), PP.36-45

Views: 0 Downloads: 0

Author(s)

Soumya Sen 1 Angshuman Khan 2,*

1. Department of Computer Science & Engineering, University of Engineering & Management, Jaipur, Rajasthan-303807, India

2. Department of Electronics & Communication Engineering, University of Engineering & Management, Jaipur, Rajasthan-303807, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijem.2025.02.03

Received: 13 May 2024 / Revised: 8 Jun. 2024 / Accepted: 11 Aug. 2024 / Published: 8 Apr. 2025

Index Terms

Ambipolar, Biosensor, Dual Metal Gate, Heterostructure, TFET, Tunnel Field Effect Transistor

Abstract

This work comprehensively analyses the device physics of a charged plasma-doped InGaAs5.86GaAs5.65 Tunnel field effect transistor (TFET) biosensor featuring a dual metal gate configuration. The device is simulated using Silvaco Atlas TCAD, with HfO2 employed as the gate dielectric alongside a nanocavity to enhance biosensing performance. The investigation focuses on crucial device parameters, including energy band profiles, potential distribution, electric field variations in both lateral and vertical directions, and electron concentration dynamics. Outcomes indicate that the biosensor keeps a superior response in the ambipolar region, with a drain current (ID) or an on current (ION) of ~10-4, due to the amalgam of the dual metal gate and InGaAs/GaAs heterostructure. This configuration also assists in supervising the flow of the carriers and, therefore, improves biosensing sensitivity and specificity. The results emphasize the advantage of this TFET configuration for next-generation biosensing technologies.

Cite This Paper

Soumya Sen, Angshuman Khan, "Optimized Ambipolar Characteristics in Charge Plasma-Doped InGaAs/GaAs TFET Biosensors with Dual Metal Gate", International Journal of Engineering and Manufacturing (IJEM), Vol.15, No.2, pp. 36-45, 2025. DOI:10.5815/ijem.2025.02.03

Reference

[1]Jeyanthi, J.E., Samuel, T.S.A., Geege, A.S, Vimala, P. (2022). A detailed roadmap from single gate to heterojunction TFET for next generation devices. Silicon, vol. 14, pp. 3185-3197. doi: 10.1007/s12633-021-01148-7.
[2]Ghosh, S., Venkateswaran, P., Sarkar, S.K. (2024), Analysis of circuit performance of Ge-Si hetero structure TFET based on analytical model. Circuit World, vol. 50, no. 2/3, pp. 195-204. doi: 10.1108/CW-08-2020-0175.
[3]Keighobadi, D., Mohammadi, S., Mohtaram, M. (2022). Recessed gate cylindrical heterostructure TFET, a device with extremely steep subthreshold swing. Transactions on Electrical and Electronic Materials. vol 23, pp. 81-87. doi: 10.1007/s42341-021-00321-4.
[4]Basab, D., Bhowmick, B. (2023). Dielectrically modulated ferroelectric-TFET (Ferro-TFET) based biosensors. Materials Science and Engineering: B, vol. 298, pp. 116841. doi: 10.1016/j.mseb.2023.116841.
[5]Rajesh, S., Hirpara, Y., Hoque, S. (2021). Sensitivity analysis on dielectric modulated Ge-source DMDG TFET based label-free biosensor. IEEE Transactions on Nanotechnology. vol. 20, pp. 552-560. doi: 10.1109/TNANO.2021.3093927.
[6]Peesa, R.B., Panda, D.K. (2022). Rapid detection of biomolecules in a junction less tunnel field-effect transistor (JL-TFET) biosensor. Silicon. vol. 14, no. 4, pp. 1705-1711. doi: 10.1007/s12633-021-00981-0.
[7]Agnihotri, S.K., Samajdar, D.P., Rajan, C., Yadav, A.S., Gnanesh, G. (2020). Performance analysis of gate engineered dielectrically modulated TFET biosensors. International Journal of Electronics. vol. 108, no. 4, pp. 607-622. doi: 10.1080/00207217.2020.1793407.
[8]Wang, Y., Li, C., Li, O., Cheng, S., Liu, W., You, H. (2022). Simulation study of dual metal-gate inverted T-shaped TFET for label-free biosensing. IEEE Sensors Journal. vol.22, no. 19, pp. 18266-18272. doi: 10.1109/JSEN.2022.3195180.
[9]Hur, J., Moon, D.-I., Han, J.-W., Kim, G.-H., Jeon, C.-H., Choi, Y.-K. (2017). Tunneling effects in a charge-plasma dopingless transistor. IEEE Transactions on Nanotechnology. vol. 16, no. 2, pp. 315-320, doi: 10.1109/TNANO.2017.2663659.
[10]Kumar, R., Kumar, J., Devi, L.V., Singh, K. (2023). Comparative study of doped and doping less charge-plasma silicon microstrip detector, Materials Today: Proceedings, vol. 80, part 3, pp. 1801-1805. doi: 10.1016/j.matpr.2021.05.614.
[11]Mishra, V., Verma, Y.K., Gupta, S.K., Rathi, V. (2022). A SiGe-source doping-less double-gate tunnel FET: design and analysis based on charge plasma technique with enhanced performance. Silicon. vol. 14, pp. 2275–2282. doi: 10.1007/s12633-021-01030-6.
[12]Singh, S., Chauhan, A.K.S., Joshi, G. Singh, J. (2022). Design and investigation of SiGe heterojunction based charge plasma vertical TFET for biosensing application. Silicon, vol. 14, pp. 6193–6204. doi: 10.1007/s12633-021-01384-x.
[13]Denton, A. R., Ashcroft, N. W. (1991). Vegard’s law. Physical review A, vol. 43, no. 6, pp. 3161. doi: 10.1103/PhysRevA.43.3161.
[14]Manual, A. U. (2000). Silvaco International. Santa Clara, CA, 95054, 23.
[15]Vimala, P., Krishna, L.L., Sharma, S.S. (2022). TFET biosensor simulation and analysis for various biomolecules. Silicon, vol. 14, pp. 7933–7938. doi: 10.1007/s12633-021-01570-x.
[16]Sakthivel, R., Keerthi, M., Chung, R.-J., He, J.-H. (2023). Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science, vol. 132, pp. 101024. doi: 10.1016/j.pmatsci.2022.101024.