IJEM Vol. 15, No. 2, 8 Apr. 2025
Cover page and Table of Contents: PDF (size: 946KB)
PDF (946KB), PP.19-35
Views: 0 Downloads: 0
Linear System, Optimal Observer, State Prediction, Luenberger Observer, Observer Gain Vector
In this study, a new optimal observer design is presented for linear systems. First, the system states are predicted in their receding horizon, and then, based on the error of state prediction, a quadratic cost function is defined such that its minimization results in an optimal gain for the proposed observer. Since the present analytic approach uses off-line optimization, it can overcome the related difficulties that may arise in non-convex optimization problems. In addition, the condition ensuring the asymptotic stability of the proposed optimal observer is developed, thus guaranteeing the asymptotic convergence of the state estimation error to zero. The estimation of the optimal state based on the prediction of system states, achieved through the asymptotic stability of the estimation error, is among the main features of the proposed method. Furthermore, the proposed observer design is independent of the type of system controller. Finally, three examples are provided to demonstrate the effectiveness of the proposed method in state estimation.
Saeed Kashefi, Majid Hajatipour, "New Optimal Observer Design Based on State Prediction for Linear Systems", International Journal of Engineering and Manufacturing (IJEM), Vol.15, No.2, pp. 19-35, 2025. DOI:10.5815/ijem.2025.02.02
[1]Moreira, L.J.D.S., Fiacchini , M., Besançon , G., Ferrante, F., & Roustan, H. (2022). Modeling and observer design for aluminum manufacturing. European Journal of Control, 64, 100611.
[2]Jinjiang Li, J., Xiang, X., Dong, D., & Shaolong Y.S. (2023). Prescribed time observer based trajectory tracking control of autonomous underwater vehicle with tracking error constraints. Elsevier, Ocean Engineering. 274(15), 114018.
[3]Yan, K., Zhang, J.R., & Ren, H.P. (2024). Interval Observer-based Robust Trajectory Tracking Control for Quadrotor Unmanned Aerial Vehicle. International Journal of Control, Automation and Systems. 22, 288–300.
[4]Luenberger, D.G. (1964). Observing the state of a linear system. IEEE Transaction on Military Electronic, 8(2), 74-80.
[5]Luenberger, D.G. (1966). Observers for multivariable systems. IEEE Transaction on Military Electronics, 11(2), 190-197.
[6]Luenberger, D.G. (1971). An Introduction to Observers. IEEE Transaction on Automatic Control, 16(6), 596-602.
[7]Kitsos, C., Besancon, G., Prieur, C. (2021). High-gain observer for 3x3 linear heterodirectional hyperbolic systems, Automatica, Elsevier, 129, 109607.
[8]Errouissi, R., Viswambharan A., Shareef, H. (2022). Robust Full Linear State-Feedback Controller for Grid-Tied LCL Filter Systems Using Adaptive High-Gain Observer. IEEE Industry Applications Society Annual Meeting (IAS) Detroit, MI, USA, 1-10.
[9]Friedland, B. (1973). Optimum steady-state position and velocity estimation using noisy sampled position data. IEEE Transactions on Aerospace and Electronic Systems AES, 9(9), 906-911.
[10]Chan, Y.T. (1982). A Kalman tracker with a simple input estimator. IEEE Transactions on Aerospace and Electronic Systems, 18(2), 235-241.
[11]Sorensson, H.W. (1985). Kalman Filtering: Theory and Application. IEEE press.
[12]Aok, M. & Huddle, J.R. (1967). Estimation of the state vector of a linear stochastic systems with a constrained estimator. IEEE Transactions on Automatic Control, 12(4), 432-433.
[13]Leondes, C.T., & Novak, L.M. (1972). Optimal minimal-order observers for discrete-time systems a united theory. Automatica, 8, 379-387.
[14]Fairman, F.W. (1977). Reduced-order state estimators for discrete-time stochastic systems. IEEE Transactions on Automatic Control, 22, 673-675.
[15]Foge, E., & Huang, Y.F. (1980). Reduced-order optimal state estimator for linear systems with partially noise corrupted measurement. IEEE Transactions on Automatic Control, 25(5), 994-996.
[16]Halevi, Y. (1989). The optimal reduced-order estimator for systems with singular measurement noise. IEEE Transactions on Automatic Control, 34(7), 777-781.
[17]Hsieh, C.S., & Chen, F.C. (2000). Modified stochastic Luenberger observers. Automatica, 36(12), 1847-1854.
[18]Sun, S., Xie, L., & Xiao, W. (2008). Optimal Full-Order and Reduced-Order Estimators for Discrete-Time Systems With Multiple Packet Dropouts. IEEE Transactions on Signal Processing, 56(8), 4031-4038.
[19]Lee, D.G., Hyu, I. (2020). Optimal Observer of a Stochastic Decentralized Singularly Perturbed Unified System. Journal of KIIT, 18(7), 29-41
[20]Chen, X., Zhao, F., Liu, Y., Liu, H., Huang T., & Qiu, J. (2023). Reduced-Order Observer-Based Preassigned Finite-Time Control of Nonlinear Systems and Its Applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(7), 4205-4215.
[21]Boulkroune, B., Darouach, M., & Zasadzinski, M. (2010). Moving horizon state estimation for linear discrete-time singular systems. IET Control Theory & Applications, 4(3), 339 – 350.
[22]Liu Q., Wang Z. (2021). Moving-Horizon Estimation for Linear Dynamic Networks With Binary Encoding Schemes. IEEE Transactions on Automatic Control, 66(4), 1763-1770.
[23]Yin X., & Huang, B. (2022). Event-Triggered Distributed Moving Horizon State Estimation of Linear Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(10), 6439-6451.
[24]Alessandri, A., Baglietto, M., & Battistelli, G. (2003). Receding horizon estimation for discrete time linear systems. IEEE Transaction on Automatic Control, 48(3), 473-478.
[25]Garcia-Tirado, J., Botero, H., Angulo, F. (2016). A new approach to state estimation for uncertain linear systems in a moving horizon estimation setting. International Journal of Automation and Computing, 13, 653–664.
[26]Mracek, C.P., Clontier, J.R., & D'Souza, C. (1996). A new technique for non-linear estimation. Proceedings of the IEEE International Conference on Control Applications, Dearborn, MI, USA, 15 Sept-18 Nov, 338-343.
[27]Chou Fu_I., Cheng M Y. (2019). Optimal design of reduced-order observers with specified eigenvalues and performance measurement of minimizing estimation errors using evolutionary optimization. Journal of Low Frequency Noise, Vibration and Active Control, 38(2), 728–739.
[28]Ramar, K. & Gourishankar, V. (1976). Optimal observers with specified eigenvalues. International of Control, 27(2), 239-244.
[29]Na J., Herrmann, G., & Vamvoudakis, K. (2017). Adaptive optimal observer design via approximate dynamic programming. American Control Conference IEEE, Seattle, USA, 24-26 May, 3288-3293.
[30]Besan¸con, G., Georges, D., & Benayache, Z. ( 2007). Asymptotic state prediction for continuous-time systems with delayed input and application to control. Control conference (ecc), European, 2007, 1786–1791.
[31]Najafi, M., Hosseinnia, S., Sheikholeslam, F. & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86 (4), 599–609.
[32]Najafi, M., Sheikholeslam, F., Wang, Q.G. and Hosseinnia, S. (2014). Robust H∞ control of single input-delay systems based on sequential sub-predictors. IET Control Theory and Applications, 8 (13), 1175–1184.
[33]Ahmed-Ali, T., Cherrier, E. & Lamnabhi-Lagarrigue, F. (2012). Cascade high gain predictors for a class of nonlinear systems. IEEE Transactions on Automatic Control, 57 (1), 221–226.
[34]Mazenc, F., & Malisoff, M., (2016). New prediction approach for stabilizing time-varying systems under time-varying input delay. Decision and control (CDC). IEEE 55th conference, 3178–3182.
[35]Sanz, R., Garcia, P., Fridman, E. & Albertos, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control.
[36]Sanz, R., García, P., Fridman E. and P. Albertos P. (2018). Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay. Journal of control, 93(2), 1-18.
[37]Zhu, Y., & Fridman E. (2021), Sub-predictors for network-based control under uncertain large delays. Automatica 123, 109350.