Image Retrieval based Local Motif Patterns Code

Full Text (PDF, 1699KB), PP.68-78

Views: 0 Downloads: 0

Author(s)

A.Obulesu 1,* V.Vijaya Kumar 2 L. Sumalatha 3

1. Anurag Group of Institutions (Autonomous), Hyderabad, India

2. Rayalaseema University, Kurnool, India

3. University College of Engineering, JNTUK, Kakinada, Andhra Pradesh, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2018.06.07

Received: 12 Jan. 2018 / Revised: 22 Feb. 2018 / Accepted: 9 Mar. 2018 / Published: 8 Jun. 2018

Index Terms

Peano scan, Optimal scan, Co-occurrence matrix, Image query

Abstract

We present a new technique for content based image retrieval by deriving a Local motif pattern (LMP) code co-occurrence matrix (LMP-CM). This paper divides the image into 2 x 2 grids. On each 2 x 2 grid two different Peano scan motif (PSM) indexes are derived, one is initiated from top left most pixel and the other is initiated from bottom right most pixel. From these two different PSM indexes, this paper derived a unique LMP code for each 2 x 2 grid, ranges from 0 to 35. Each PSM minimizes the local gradient while traversing the 2 x 2 grid. A co-occurrence matrix is derived on LMP code and Grey level co-occurrence features are derived for efficient image retrieval. This paper is an extension of our previous MMCM approach [54]. Experimental results on popular databases reveal an improvement in retrieval rate than existing methods.

Cite This Paper

A.Obulesu, V. Vijay Kumar, L. Sumalatha ," Image Retrieval based Local Motif Patterns Code ", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.10, No.6, pp. 68-78, 2018. DOI: 10.5815/ijigsp.2018.06.07

Reference

[1]L. Junling, K. Degang, Z.H. Wei, C. Chongxu, Image retrieval based on weighted blocks and color feature, in: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), IEEE, 2011, pp. 921–924.

[2]Chen WT, Liu WC, Chen MS. Adaptive color feature extraction based on image color distributions. IEEE Trans Image Process 2010;19(8):2005 

[3]Liu GH, Yang JY. Content-based image retrieval using color difference histogram. Pattern Recogn 2013;46(1):188–98.

[4]Wang XY, Yu YJ, Yang HY. An effective image retrieval scheme using color, texture & shape features. Comput Stand Interfaces 2011;33(1):59–68.

[5]Umesh D. Dixit, M. S. Shirdhonkar, Signature based Document Image Retrieval Using Multi-level DWT Features, I.J. Image, Graphics and Signal Processing (IJIGSP) , 2017, 8, 42-49.

[6]Dongfeng Han Wenhui Li, Xiaomo Wang, Yanjie She , Interest Region-Based Image Retrieval System Based on Graph-Cut Segmentation and Feature Vectors , International Conference on Computational and Information Science CIS 2005: Computational Intelligence and Security pp 483-488

[7]Lakhdar Belhallouche, Kamel Belloulata , Kidiyo Kpalmag. A New Approach to Region Based Image Retrieval using Shape Adaptive Discrete Wavelet Transform, I.J. Image, Graphics and Signal Processing (IJIGSP), 2016, 1, 1-14.

[8]G S Murty ,J Sasi Kiran , V.Vijaya Kumar, “Facial expression recognition based on features derived from the distinct LBP and GLCM”, International Journal of Image, Graphics And Signal Processing (IJIGSP), Vol.2, Iss.1, pp. 68-77,2014, ISSN: 2074-9082.

[9]Pullela R Kumar, V. Vijaya Kumar, Rampay.Venkatarao, “Age classification based on integrated approach”. International Journal of Image, Graphics and Signal Processing (IJIGSP), Vol. 6, Iss.7, 2014, pp. 50-57, ISSN: 2074-9082.

[10]G S Murty ,J Sasi Kiran , V.Vijaya Kumar, “Facial expression recognition based on features derived from the distinct LBP and GLCM”, International Journal of Image, Graphics And Signal Processing (IJIGSP), Vol.2, Iss.1, pp. 68-77,2014, ISSN: 2074-9082.

[11]Amir Farhad Nilizadeh, Ahmad Reza Naghsh Nilchi, Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels, I.J. Image, Graphics and Signal Processing (IJIGSP), 20 , , 1-9. 

[12]Dolly Choudhary, Ajay Kumar Singh, Shamik Tiwari, Dr. V P Shukla, Performance Analysis of Texture Image Classification Using Wavelet Feature, I.J. Image, Graphics and Signal Processing (IJIGSP), 2013, 1, 58-63

[13]M. Srinivasa Rao, V.Vijaya Kumar, MHM KrishnaPrasad, Texture Classification based on Local Features Using Dual Neighborhood Approach, I.J. Image, Graphics and Signal Processing (IJIGSP), 2017, 9, 59-67

[14]K. Srinivasa Reddy, V. Vijaya Kumar, B. Eswara ReddyFace Recognition Based on Texture Features using Local Ternary Patterns, I.J. Image, Graphics and Signal Processing (IJIGSP), 2015, 10, 37-46.

[15]P. S. Hiremath and Manjunatha Hiremath, Depth and Intensity Gabor Features Based 3D Face Recognition Using Symbolic LDA and AdaBoost, I.J. Image, Graphics and Signal Processing (IJIGSP), 2014, 1, 32-39.

[16]Lin CH, Huang DC, Chan YK, Chen KH, Chang YJ. Fast color-spatial feature based image retrieval methods. Expert Syst Appl 2011;38(9):11412–20.

[17]JunYueabZhenboLib1LuLiubZetianFu, Content-based image retrieval using color and texture fused features Mathematical and Computer Modelling Volume 54, Issues 3–4, August 2011, Pages 1121-1127.

[18]Cross.G, Jain. A, Markov random field texture models, IEEE trans. Patter. Amnal. Mach. Intell. 5(1), 25-39, 1983 

[19]Qin H., Qin L., Xue L., Li Y. A kernel Gabor-based weighted region covariance matrix for face recognition. Sensors. 2012;12:992–993.

[20]Zhang B., Gao Y., Zhao S., Liu J. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE. Trans. Image Process. 2010;19:533–544

[21]Basavaraj S. Anami1 , Suvarna S Nandyal2 , Govardhan. A, Color and Edge Histograms Based Medicinal Plants’ Image Retrieval, I.J. Image, Graphics and Signal Processing, 2012, 8, 24-35..

[22]T. Ojala, M. Pietikäinen, T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) (2002) 971–987.

[23]Nidhal El Abbadi1 and Lamis Al Saadi, Automatic Detection and Recognize Different Shapes in an Image, IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013

[24]Gang Zhang ,Zong-min Ma ,Lian-qiang Niu , Chun-ming Zhang ,, Modified Fourier descriptor for shape feature extraction , Journal of Central South University February 2012, Volume 19, Issue 2, pp 488–495

[25]J. Flusser, T. Suk, Pattern recognition by affine moment invariants, Pattern Recogn. 26 (1) (1993) 167–174. 

[26]B.S. Manjunath, P. Salembier, T. Sikora, Introduction to MPEG-7: Multimedia Content Description Interface, vol. 1, John Wiley & Sons, 2002.

[27]G.H. Liu, J.Y. Yang, Image retrieval based on the texton co-occurrence matrix, Pattern Recogn. 41 (12) (2008) 3521–3527.

[28]G.H. Liu, L. Zhang, Y.K. Hou, Z.Y. Li, J.Y. Yang, Image retrieval based on multi-texton histogram, Pattern Recogn. 43 (7) (2010) 2380–2389.

[29]G.H. Liu, Z.Y. Li, L. Zhang, Y. Xu, Image retrieval based on micro-structure descriptor, Pattern Recogn. 44 (9) (2011) 2123–2133.

[30]X. Wang, Z. Wang, A novel method for image retrieval based on structure elements descriptor, J. Visual Commun. Image Represent. 24 (1) (2013) 63–74.

[31]G.H. Liu, J.Y. Yang, Content-based image retrieval using color difference histogram, Pattern Recogn. 46 (1) (2013) 188–198.

[32]Ketan Tang ; Oscar C. Au ; Lu Fang ; Zhiding Yu ; Yuanfang Guo, Multi-scale analysis of color and texture for salient object detection,  Image Processing (ICIP), 2011 18th IEEE International Conference on, 1-14 Sept. 2011.

[33]M. Verma, B. Raman, S. Murala, Local extrema co-occurrence pattern for color and texture image retrieval, Neurocomputing 165 (2015) 255–269.

[34]G. Seetharaman, B. Zavidovique, Image processing in a tree of Peano coded images, in: Proceedings of the IEEE Workshop on Computer Architecture for Machine Perception, Cambridge, CA (1997).

[35]G. Seetharaman, B. Zavidovique, Z-trees: adaptive pyramid algorithms for image segmentation, in: Proceedings of the IEEE International Conference on Image Processing, ICIP98, Chicago, IL, October (1998).

[36]G. Shivaram, G. Seetharaman, Data compression of discrete sequence: a tree based approach using dynamic programming, IEEE Transactions on Image Processing (1997) (in review).

[37]A.R. Butz, Space filling curves and mathematical programming, Information and Control 12 (1968) 314–330.

[38]G. Peano, Sur une courbe qui remplit toute une aire plaine, Mathematische Annalen 36 (1890) 157–160.

[39]D. Hilbert, Uber die stettige Abbildung einter linie auf einFlachenstuck, Mathematical Annalen 38 (1891) 459–461.

[40]N. Jhanwar, S. Chaudhuri, G. Seetharaman, B. Zavidovique, Content based image retrieval using optimal Peano scans, in: International Conference for Pattern Recognition, August (2002).

[41]G. Peano, Sur une courbe qui remplit toute une aire plaine, Mathematische Annalen 36 (1890) 157–160.

[42]D. Hilbert, Uber die stettige Abbildung einter linie auf ein Flachenstuck, Mathematical Annalen 38 (1891) 459–461.

[43]A. Lempel, J. Ziv, Compression of two-dimensional data, IEEE Transactions on Information Theory 32 (1) (1986) 2–8.

[44]J. Quinqueton, M. Berthod, A locally adaptive Peano scanning algorithm, IEEE Transactions on PAMI, PAMI-3 (4) (1981) 403–412.

[45]P.T. Nguyen, J. Quinqueton, Space filling curves and texture analysis, IEEE Transactions on PAMI, PAMI-4 (4) (1982)

[46]R. Dafner, D. Cohen-Or, Y. Matias, Context based space filling curves, EUROGRAPH-ICS Journal 19 (3) (2000).

[47]A.Obulesu, V. Vijay Kumar, L.  Sumalatha, Content Based Image Retrieval Using Multi Motif Co-Occurrence Matrix, International journal of image,graphic signal processing (IJIGSP), (Accepted). 

[48]Jhanwar N, Chaudhuri S, Seetharaman G, Zavidovique B. Content-based image retrieval using motif co-occurrence matrix. Image Vision Comput 2004; 22:1211–20.

[49]Corel Photo Collection Color Image Database, online available on http://wang.ist.psu.edu/docs/related.shtml

[50]Corel database: http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx

[51]MIT Vision and Modeling Group, Cambridge, „Vision texture‟, http://vismod.media.mit.edu/pub/.

[52]P. Brodatz, Textures: “A Photographic Album for Artists and Designers “.New York, NY, USA: Dover, 1999.

[53]T. Sim, S. Baker, and M. Bsat, ―The CMU pose, illumination, and expression database,‖ IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1615–1618, Dec. 2003.

[54]X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions,” IEEE. Trans. Image Process., vol. 19, no. 6, pp. 1635–1650, Jun. 2010.

[55]K. Jeong, J. Choi, and G. Jang, “Semi-Local Structure Patterns for Robust Face Detection,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1400-1403, 2015.

[56]B. Zhang, Y. Gao, S. Zhao and J. Liu, “Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor,” IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 533-544, 2010.

[57]S. Murala, R.P. Maheshwari and R. Balasubramanian, “Local tetra patterns: a new feature descriptor for content-based image retrieval,” IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2874-2886, 2012.