International Journal of Image, Graphics and Signal Processing (IJIGSP)

ISSN: 2074-9074 (Print)

ISSN: 2074-9082 (Online)

DOI: https://doi.org/10.5815/ijigsp

Website: https://www.mecs-press.org/ijigsp

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 136

(IJIGSP) in Google Scholar Citations / h5-index

IJIGSP is committed to bridge the theory and practice of images, graphics, and signal processing. From innovative ideas to specific algorithms and full system implementations, IJIGSP publishes original, peer-reviewed, and high quality articles in the areas of images, graphics, and signal processing. IJIGSP is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of images, graphics, and signal processing applications.

 

IJIGSP has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJIGSP Vol. 17, No. 2, Apr. 2025

REGULAR PAPERS

Agile Intelligent Information Technology for Speech Synthesis Based on Transfer Function Approximation Methods Using Continued Fractions

By Lyubomyr Chyrun Victoria Vysotska Sofia Chyrun Zhengbing Hu Yuriy Ushenko Dmytro Uhryn

DOI: https://doi.org/10.5815/ijigsp.2025.02.01, Pub. Date: 8 Apr. 2025

The study considers the methodology of using continued fractions to approximate transfer functions in speech synthesis systems. The main results of the research are an increase in the accuracy of approximation, acceleration of calculations, and a new method of convergence analysis. The use of continued fractions allowed for a reduction in the error of approximation of transfer functions compared to classical methods. With an error of 1.0E-06, the continued fraction method requires only 3–13 terms, while the power series requires 3–15 terms. The use of continued fractions reduced the time for calculating transfer functions by 2–3%. It was determined that the most effective for calculating the values of continued fractions are the Δ-algorithm and the α-algorithm. A new criterion for the convergence of continued fractions is proposed, which allows the sum fractions that are "divergent" in the classical sense. The graphs used to classify different types of continued fractions allowed us to better understand their structure and potential for application in speech synthesis. Software for calculating transfer function values based on continued fraction decomposition has been developed and tested. It has allowed automation of the approximation process and increased the efficiency of speech synthesis systems. The results obtained have allowed improving the quality of synthesised speech while simultaneously reducing the complexity of calculations. Systems using continued fractions consume less memory and provide more accurate voice reproduction. In summary, the work presents a new approach to the approximation of transfer functions, which is essential for optimising speech synthesis systems.

[...] Read more.
A Novel Local Adaptive Percentage Split Distribution Method for Image Binarization and Classification

By Joy Christy A. Umamakeswari A. Shanthi P. Srilakshmi A. Siva Chandrasekaran

DOI: https://doi.org/10.5815/ijigsp.2025.02.02, Pub. Date: 8 Apr. 2025

Binary thresholding methods separate image pixels into two groups as 0s or 1s. The two types of binary thresholding methods are global thresholding and local thresholding. Global thresholding methods are appropriate for binarizing the images that has smooth and contrast distribution of pixels. The performance of global thresholding struggles with distorted and tampered images as it introduces additional noise and causes variation in contrast and illumination. Local adaptive thresholding methods address the issue with every pixel a threshold based on the contrast distribution of neighboring pixels. This paper introduces Local Adaptive Percentage Split Distribution (LAPSD) method for binarization. LAPSD computes threshold based on percentage wise split of neighboring pixels. The performance of LAPSD is compared with benchmark binary thresholding methods such Bradley’s, Niblack’s, and Sauvola’s against PSNR, SSIM and MSE metrics. The accuracy of LAPSD image binarization is measured using Convolution Neural Network (CNN) models and the results prove that the performance of the proposed method surpasses traditional methods in all means.  

[...] Read more.
A Novel Approach for Enhancing COVID-19 Diagnosis Accuracy through Graph Neural Networks Using Respiratory Sound Data

By Nagaraju Sonti Rukmini M. S. S. Venkatesh Munagala

DOI: https://doi.org/10.5815/ijigsp.2025.02.03, Pub. Date: 8 Apr. 2025

This research presents a groundbreaking method using graph neural networks (GNN) for the accurate identification of COVID-19 through the analysis of respiratory sounds. The method utilizes advanced signal processing and machine learning techniques, including Fast Fourier Transforms (FFTs), Mel-spectrograms, and GNN methodology. FFTs are used as a preprocessing step to convert raw respiratory sound signals into frequency-domain representations, enhancing signal quality and isolating informative acoustic patterns. Mel-spectrograms are used to extract essential feature vectors for diagnostic classification, enhancing the model's ability to discern subtle patterns indicative of COVID-19 infection.
The GNN methodology feeds preprocessed audio features into a graph neural network architecture, which excels at capturing complex relationships and dependencies within data by modeling them as graphs. In this context, respiratory sound data is represented as a graph, with nodes corresponding to specific audio features and edges representing relationships between them. The GNN effectively learns to propagate information across the graph, enabling it to identify meaningful patterns indicative of COVID-19 infection. The research findings show that GNN surpasses convolutional neural network (CNN) in terms of accuracy, precision, recall, and F1 score, indicating significant progress in the application of GNN in medical diagnostics. The study provides a comprehensive examination of the possibilities of using advanced neural network techniques to transform disease detection and diagnosis, with a validation accuracy of up to 97% under rigorous constraints.

[...] Read more.
Brain Tissue Segmentation from the MR Images Affected by Noise and Intensity Inhomogeneity Using a Novel Linguistic Fuzzifier-Based FCM Algorithm

By Sandhya Gudise

DOI: https://doi.org/10.5815/ijigsp.2025.02.04, Pub. Date: 8 Apr. 2025

Brain MRI is mainly affected by noise and intensity inhomogeneity (IIH) during its acquisition. Brain tissue segmentation plays an important role in biomedical research and clinical applications. Brain tissue segmentation is essential for physicians for the proper diagnosis and right treatment of brain-related disorders. Fuzzy C-means (FCM) clustering is one of the widely used algorithms for brain tissue segmentation. Traditional FCM has the limitations of misclassification of pixels that leads to inaccurate cluster centers. Due to this, it is unable to address the issues of noise and IIH. In FCM there exists uncertainty in controlling the fuzziness of the clusters as the fuzzifier is fixed. This paper proposed a novel linguistic fuzzifier-based FCM (LFFCM) to overcome the limitations of traditional FCM during brain tissue segmentation from the MR images. In this method, a linguistic fuzzifier is used instead of a fixed fuzzifier. The spatial information incorporated in the membership function can reduce the misclassification of pixels. The proposed LFFCM can handle IIH, due to having highly accurate cluster centers. The inclusion of the adaptive weights in the membership function results in accurate cluster centers.  Various brain MR images are used to evaluate the proposed technique and the results are compared with some state-of-the-art techniques. The results reveal that the proposed method performed better than the other.

[...] Read more.
Design of an Efficient UNet-Based Transfer Learning Model for Enhancing Skin Cancer Segmentation and Classification Performance

By Namrata Verma Pankaj Kumar Mishra

DOI: https://doi.org/10.5815/ijigsp.2025.02.05, Pub. Date: 8 Apr. 2025

Accurate and efficient segmentation and classification are indispensable for the early diagnosis and treatment of skin cancer, a common and potentially fatal condition. Combining the UNet architecture with Auto Encoders for robust skin cancer segmentation, followed by binary cascade Convolutional Neural Networks (CNNs). In this text, we present a novel method for accurately classifying melanoma and basal cell carcinoma. Existing models are limited in their ability to achieve high precision, accuracy, and recall rates while maintaining a high Peak Signal-to-Noise Ratio (PSNR) for accurate image reconstruction, which necessitates this research. Our proposed model overcomes these limitations and performs exceptionally well on datasets: ISIC, HAM10000, PH2 Dataset, and Dermofit Image Libraries. When UNet and Auto Encoders are used, the advantages of both architectures are combined. The UNet architecture, renowned for its superior performance in image segmentation tasks, provides a solid foundation for separating skin cancer regions from surrounding tissue. The Auto Encoder component simultaneously facilitates feature extraction and image reconstruction, leading to improved representation learning and segmentation results. Utilizing the complementary capabilities of these models, our method improves the accuracy and efficiency of skin cancer segmentations. Using binary cascade CNNs for classification also improves our model's performance. The binary cascade architecture employs a hierarchical classification method that iteratively improves classification choices at each stage. This facilitates the differentiation between basal cell carcinoma, melanoma, and melanocytic nevi, resulting in highly accurate and trustworthy predictions. Extensive experiments were conducted on the ISIC, HAM10000, PH2 Dataset, and Dermofit Image Library to evaluate the performance of our proposed model. The achieved precision of 99.2%, accuracy of 98.3%, recall of 98.9%, and PSNR greater than 42dB demonstrate the superior functionality and effectiveness of our strategy. These results suggest that our model has a great deal of potential for assisting dermatologists in the early identification and classification of skin cancer, ultimately leading to improved patient outcomes. The combination of UNet with Auto Encoders and binary cascade CNNs has proven effective for segmenting and classifying skin cancer. Our proposed model outperforms current methods in terms of precision, accuracy, recall, and PSNR, demonstrating its potential to have a significant impact on the field of dermatology and aid in the early detection and treatment of skin cancers.

[...] Read more.
CNN and GAN Based Stroke Detection Using CT Scan Images

By Archana Chaudhari Atharva Rajadhyaksha Sharvil Patil Himanshu Pawar

DOI: https://doi.org/10.5815/ijigsp.2025.02.06, Pub. Date: 8 Apr. 2025

The objective of the research work is to detect stroke using CT scan images. In the research work an analysis of 3D CNN method for stroke detection is presented. The work also presents a new method of stroke detection using semi-supervised Adversarial Networks (SGAN).3D CNN is the traditional approach to any type of image classification problem. But being data-hungry, it becomes difficult to use them when data is scarce. High-quality medical data is difficult to find and hence alternative approaches seem worth approaching. The relatively new GANs can generate images like the training images, and its SGAN variant can use these generated images for training the classifier. We investigate the usefulness of SGANs comparatively with CNNs in this paper. The proposed SGAN method is compared with state of art methods in literature using accuracy, sensitivity and specificity. The SGAN method demonstrates an accuracy of 93%, Sensitivity of 100% and Specificity of 90%. For small data sets in medical imaging the proposed SGAN method exhibit an encouraging performance as compared to other methods using large datasets. In the research paper, we propose methodologies for detecting strokes by using 2 approaches: 3D CNNs and SGANs. The relatively new GANs can generate images like the training images, and its SGAN variant can use these generated images for training the classifier. We investigate the usefulness of SGANs comparatively with CNNs in this paper.

[...] Read more.
Voice Comparison Using Acoustic Analysis and Generative Adversarial Network for Forensics

By Kruthika S. G Trisiladevi C Nagavi P. Mahesha Abhishek Kumar

DOI: https://doi.org/10.5815/ijigsp.2025.02.07, Pub. Date: 8 Apr. 2025

Forensic Voice Comparison (FVC) is a scientific analysis that examines audio recordings to determine whether they come from the same or different speakers in digital forensics. In this research work, the experiment utilizes three different techniques, like pre-processing, feature extraction, and classification. In preprocessing, the stationery noise reduction algorithm is used to remove unwanted background noise by increasing the clarity of the speech. This in turn helps to improve the overall audio quality by reducing distractions. Further, acoustic features like Mel Frequency Cepstral Coefficients (MFCC) are used to extract relevant and distinctive features from audio signals to characterize and analyze the unique vocal patterns of different individual. Later, the Generative Adversarial Network (GAN) is used to generate synthetic MFCC features and also for augmenting the data samples. Finally, the Logistic Regression (LR) is realized using UK framework for the classification of the model to predict whether the result is true or false. The results achieved in terms of accuracy are 62% considering 3899 samples and 85% when considering set of 985 samples for the Australian English datasets.

[...] Read more.
Performance Comparison and Investigation of Tropical Cyclone Intensity Estimation from Satellite Images Using Deep Learning and Machine Learning

By Md. Ahsan Rahat Nusrat Sharmin Fairooz Nawar Nawme Sabbir Rahman

DOI: https://doi.org/10.5815/ijigsp.2025.02.08, Pub. Date: 8 Apr. 2025

Tropical cyclones, considered extreme weather events, can cause significant damage to coastal areas, impacting millions of people and animals while also posing the risk of substantial economic losses. Traditionally, the Dvorak technique has been employed to assess the intensity of these cyclones, involving the visual analysis of satellite data to evaluate the storm’s cloud patterns and strength. In recent years, various studies have explored the use of deep learning (DL) and machine learning (ML) techniques to estimate tropical cyclone intensity. However, there is a lack of research providing a comparative analysis that integrates both ML and DL approaches for the estimation of tropical cyclone intensity. This study looks into the use of ML and DL techniques to estimate the strength of tropical cyclones. On diverse datasets and satellite imagery, we study the usage of convolutional neural networks (CNN, VGG16, DenseNet), recurrent neural networks (LSTM), and other machine learning methods (XGBoost, CatBoost, SVM, DT). Our findings suggest that both ML and DL methods have substantial promise for improving tropical cyclone intensity estimation accuracy; however, in our case study, DL algorithms outperformed ML algorithms. This study investigates the utilization of ML and DL techniques in assessing the strength of tropical cyclones. Employing various datasets and satellite imagery, we examine the performance of convolutional neural networks (CNNs such as VGG16 and DenseNet), recurrent neural networks (LSTM), and other ML methods (XGBoost, CatBoost, SVM, DT). Our results indicate that both ML and DL approaches show significant promise in enhancing the accuracy of tropical cyclone intensity estimation. Nevertheless, in our specific case study, DL algorithms demonstrated superior performance compared to ML algorithms.

[...] Read more.
Edibility Detection of Mushroom Using Ensemble Methods

By Nusrat Jahan Pinky S.M. Mohidul Islam Rafia Sharmin Alice

DOI: https://doi.org/10.5815/ijigsp.2019.04.05, Pub. Date: 8 Apr. 2019

Mushrooms are the most familiar delicious food which is cholesterol free as well as rich in vitamins and minerals. Though nearly 45,000 species of mushrooms have been known throughout the world, most of them are poisonous and few are lethally poisonous. Identifying edible or poisonous mushroom through the naked eye is quite difficult. Even there is no easy rule for edibility identification using machine learning methods that work for all types of data. Our aim is to find a robust method for identifying mushrooms edibility with better performance than existing works. In this paper, three ensemble methods are used to detect the edibility of mushrooms: Bagging, Boosting, and random forest. By using the most significant features, five feature sets are made for making five base models of each ensemble method. The accuracy is measured for ensemble methods using five both fixed feature set-based models and randomly selected feature set based models, for two types of test sets. The result shows that better performance is obtained for methods made of fixed feature sets-based models than randomly selected feature set-based models. The highest accuracy is obtained for the proposed model-based random forest for both test sets.

[...] Read more.
Image Denoising based on Enhanced Wavelet Global Thresholding Using Intelligent Signal Processing Algorithm

By Joseph Isabona Agbotiname Lucky Imoize Stephen Ojo

DOI: https://doi.org/10.5815/ijigsp.2023.05.01, Pub. Date: 8 Oct. 2023

Denoising is a vital aspect of image preprocessing, often explored to eliminate noise in an image to restore its proper characteristic formation and clarity. Unfortunately, noise often degrades the quality of valuable images, making them meaningless for practical applications. Several methods have been deployed to address this problem, but the quality of the recovered images still requires enhancement for efficient applications in practice. In this paper, a wavelet-based universal thresholding technique that possesses the capacity to optimally denoise highly degraded noisy images with both uniform and non-uniform variations in illumination and contrast is proposed. The proposed method, herein referred to as the modified wavelet-based universal thresholding (MWUT), compared to three state-of-the-art denoising techniques, was employed to denoise five noisy images. In order to appraise the qualities of the images obtained, seven performance indicators comprising the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Structural Content (SC), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Signal-to-Reconstruction-Error Ratio (SRER), Blind Spatial Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) were employed. The first five indicators – RMSE, MAE, SC, PSNR, SSIM, and SRER- are reference indicators, while the remaining two – NIQE and BRISQUE- are referenceless. For the superior performance of the proposed wavelet threshold algorithm, the SC, PSNR, SSIM, and SRER must be higher, while lower values of NIQE, BRISQUE, RMSE, and MAE are preferred. A higher and better value of PSNR, SSIM, and SRER in the final results shows the superior performance of our proposed MWUT denoising technique over the preliminaries. Lower NIQE, BRISQUE, RMSE, and MAE values also indicate higher and better image quality results using the proposed modified wavelet-based universal thresholding technique over the existing schemes. The modified wavelet-based universal thresholding technique would find practical applications in digital image processing and enhancement.

[...] Read more.
Evolutionary Image Enhancement Using Multi-Objective Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2014.01.09, Pub. Date: 8 Nov. 2013

Image Processing is the art of examining, identifying and judging the significances of the Images. Image enhancement refers to attenuation, or sharpening, of image features such as edgels, boundaries, or contrast to make the processed image more useful for analysis. Image enhancement procedures utilize the computers to provide good and improved images for study by the human interpreters. In this paper we proposed a novel method that uses the Genetic Algorithm with Multi-objective criteria to find more enhance version of images. The proposed method has been verified with benchmark images in Image Enhancement. The simple Genetic Algorithm may not explore much enough to find out more enhanced image. In the proposed method three objectives are taken in to consideration. They are intensity, entropy and number of edgels. Proposed algorithm achieved automatic image enhancement criteria by incorporating the objectives (intensity, entropy, edges). We review some of the existing Image Enhancement technique. We also compared the results of our algorithms with another Genetic Algorithm based techniques. We expect that further improvements can be achieved by incorporating linear relationship between some other techniques.

[...] Read more.
Mobile-Based Skin Disease Diagnosis System Using Convolutional Neural Networks (CNN)

By M.W.P Maduranga Dilshan Nandasena

DOI: https://doi.org/10.5815/ijigsp.2022.03.05, Pub. Date: 8 Jun. 2022

This paper presents a design and development of an Artificial Intelligence (AI) based mobile application to detect the type of skin disease. Skin diseases are a serious hazard to everyone throughout the world. However, it is difficult to make accurate skin diseases diagnosis. In this work, Deep learning algorithms Convolution Neural Networks (CNN) is proposed to classify skin diseases on the HAM10000 dataset. An extensive review of research articles on object identification methods and a comparison of their relative qualities were given to find a method that would work well for detecting skin diseases. The CNN-based technique was recognized as the best method for identifying skin diseases. A mobile application, on the other hand, is built for quick and accurate action. By looking at an image of the afflicted area at the beginning of a skin illness, it assists patients and dermatologists in determining the kind of disease present. Its resilience in detecting the impacted region considerably faster with nearly 2x fewer computations than the standard MobileNet model results in low computing efforts. This study revealed that MobileNet with transfer learning yielding an accuracy of about 85% is the most suitable model for automatic skin disease identification. According to these findings, the suggested approach can assist general practitioners in quickly and accurately diagnosing skin diseases using the smart phone.

[...] Read more.
A Review of Self-supervised Learning Methods in the Field of Medical Image Analysis

By Jiashu Xu

DOI: https://doi.org/10.5815/ijigsp.2021.04.03, Pub. Date: 8 Aug. 2021

In the field of medical image analysis, supervised deep learning strategies have achieved significant development, while these methods rely on large labeled datasets. Self-Supervised learning (SSL) provides a new strategy to pre-train a neural network with unlabeled data. This is a new unsupervised learning paradigm that has achieved significant breakthroughs in recent years. So, more and more researchers are trying to utilize SSL methods for medical image analysis, to meet the challenge of assembling large medical datasets. To our knowledge, so far there still a shortage of reviews of self-supervised learning methods in the field of medical image analysis, our work of this article aims to fill this gap and comprehensively review the application of self-supervised learning in the medical field. This article provides the latest and most detailed overview of self-supervised learning in the medical field and promotes the development of unsupervised learning in the field of medical imaging. These methods are divided into three categories: context-based, generation-based, and contrast-based, and then show the pros and cons of each category and evaluates their performance in downstream tasks. Finally, we conclude with the limitations of the current methods and discussed the future direction.

[...] Read more.
Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2015.02.06, Pub. Date: 8 Jan. 2015

Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

[...] Read more.
Radio Receiver with Internal Compression of Input Signals Using a Dispersive Delay Line with Bandpass Filters

By Roman Pantyeyev Felix Yanovsky Andriy Mykolushko Volodymyr Shutko

DOI: https://doi.org/10.5815/ijigsp.2023.06.01, Pub. Date: 8 Dec. 2023

This article proposes a receiving device in which arbitrary input signals are subject to pre-detector processing for the subsequent implementation of the idea of compressing broadband modulated pulses with a matched filter to increase the signal-to-noise ratio and improve resolution. For this purpose, a model of a dispersive delay line is developed based on series-connected high-frequency time delay lines with taps in the form of bandpass filters, and analysis of this model is performed as a part of the radio receiving device with chirp signal compression. The article presents the mathematical description of the processes of formation and compression of chirp signals based on their matched filtering using the developed model and proposes the block diagram of a radio receiving device using the principle of compression of received signals. The proposed model can be implemented in devices for receiving unknown signals, in particular in passive radar. It also can be used for studying signal compression processes based on linear frequency modulation in traditional radar systems.

[...] Read more.
An Efficient Brain Tumor Detection Algorithm Using Watershed & Thresholding Based Segmentation

By Anam Mustaqeem Engr Ali Javed Tehseen Fatima

DOI: https://doi.org/10.5815/ijigsp.2012.10.05, Pub. Date: 28 Sep. 2012

During past few years, brain tumor segmentation in magnetic resonance imaging (MRI) has become an emergent research area in the ?eld of medical imaging system. Brain tumor detection helps in finding the exact size and location of tumor. An efficient algorithm is proposed in this paper for tumor detection based on segmentation and morphological operators. Firstly quality of scanned image is enhanced and then morphological operators are applied to detect the tumor in the scanned image.

[...] Read more.
Enhancement of Mammographic Images Based on Wavelet Denoise and Morphological Contrast Enhancement

By Toan Le Van Liet Van Dang

DOI: https://doi.org/10.5815/ijigsp.2023.06.03, Pub. Date: 8 Dec. 2023

Breast cancer can be detected by mammograms, but not all of them are of high enough quality to be diagnosed by physicians or radiologists. Therefore, denoising and contrast enhancement in the image are issues that need to be addressed. There are numerous techniques to reduce noise and enhance contrast; the most popular of which incorporate spatial filters and histogram equalization. However, these techniques occasionally result in image blurring, particularly around the edges. The purpose of this article is to propose a technique that uses wavelet denoising in conjunction with top-hat and bottom-hat morphological transforms in the wavelet domain to reduce noise and image quality without distorting the image. Use five wavelet functions to test the proposed method: Haar, Daubechies (db3), Coiflet (coif3), Symlet (sym3), and Biorthogonal (bior1.3); each wavelet function employs levels 1 through 4 with four types of wavelet shrinkage: Bayer, Visu, SURE, and Normal. Three flat structuring elements in the shapes of a disk, a square, and a diamond with sizes 2, 5, 10, 15, 20, and 30 are utilized for top-hat and bottom-hat morphological transforms. To determine optimal parameters, the proposed method is applied to mdb001 mammogram (mini MIAS database) contaminated with Gaussian noise with SD, ? = 20. Based on the quality assessment quantities, the Symlet wavelet (sym3) at level 3, with Visu shrinkage and diamond structuring element size 5 produced the best results (MSE = 50.020, PSNR = 31.140, SSIM = 0.407, and SC = 1.008). The results demonstrate the efficacy of the proposed method.

[...] Read more.
Fast Encryption Scheme for Secure Transmission of e-Healthcare Images

By Devisha Tiwari Bhaskar Mondal Anil Singh

DOI: https://doi.org/10.5815/ijigsp.2023.05.07, Pub. Date: 8 Oct. 2023

E-healthcare systems (EHSD), medical communications, digital imaging (DICOM) things have gained popularity over the past decade as they have become the top contenders for interoperability and adoption as a global standard for transmitting and communicating medical data. Security is a growing issue as EHSD and DICOM have grown more usable on any-to-any devices. The goal of this research is to create a privacy-preserving encryption technique for EHSD rapid communication with minimal storage. A new 2D logistic-sine chaotic map (2DLSCM) is used to design the proposed encryption method, which has been developed specifically for peer-to-peer communications via unique keys. Through the 3D Lorenz map which feeds the initial values to it, the 2DLSCM is able to provide a unique keyspace of 2544 bits (2^544bits) in each go of peer-to-peer paired transmission. Permutation-diffusion design is used in the encryption process, and 2DLSCM with 3DLorenz system are used to generate unique initial values for the keys. Without interfering with real-time medical transmission, the approach can quickly encrypt any EHSD image and DICOM objects. To assess the method, five distinct EHSD images of different kinds, sizes, and quality are selected. The findings indicate strong protection, speed, and scalability when compared to existing similar methods in literature.

[...] Read more.
Edibility Detection of Mushroom Using Ensemble Methods

By Nusrat Jahan Pinky S.M. Mohidul Islam Rafia Sharmin Alice

DOI: https://doi.org/10.5815/ijigsp.2019.04.05, Pub. Date: 8 Apr. 2019

Mushrooms are the most familiar delicious food which is cholesterol free as well as rich in vitamins and minerals. Though nearly 45,000 species of mushrooms have been known throughout the world, most of them are poisonous and few are lethally poisonous. Identifying edible or poisonous mushroom through the naked eye is quite difficult. Even there is no easy rule for edibility identification using machine learning methods that work for all types of data. Our aim is to find a robust method for identifying mushrooms edibility with better performance than existing works. In this paper, three ensemble methods are used to detect the edibility of mushrooms: Bagging, Boosting, and random forest. By using the most significant features, five feature sets are made for making five base models of each ensemble method. The accuracy is measured for ensemble methods using five both fixed feature set-based models and randomly selected feature set based models, for two types of test sets. The result shows that better performance is obtained for methods made of fixed feature sets-based models than randomly selected feature set-based models. The highest accuracy is obtained for the proposed model-based random forest for both test sets.

[...] Read more.
Evolutionary Image Enhancement Using Multi-Objective Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2014.01.09, Pub. Date: 8 Nov. 2013

Image Processing is the art of examining, identifying and judging the significances of the Images. Image enhancement refers to attenuation, or sharpening, of image features such as edgels, boundaries, or contrast to make the processed image more useful for analysis. Image enhancement procedures utilize the computers to provide good and improved images for study by the human interpreters. In this paper we proposed a novel method that uses the Genetic Algorithm with Multi-objective criteria to find more enhance version of images. The proposed method has been verified with benchmark images in Image Enhancement. The simple Genetic Algorithm may not explore much enough to find out more enhanced image. In the proposed method three objectives are taken in to consideration. They are intensity, entropy and number of edgels. Proposed algorithm achieved automatic image enhancement criteria by incorporating the objectives (intensity, entropy, edges). We review some of the existing Image Enhancement technique. We also compared the results of our algorithms with another Genetic Algorithm based techniques. We expect that further improvements can be achieved by incorporating linear relationship between some other techniques.

[...] Read more.
Image Denoising based on Enhanced Wavelet Global Thresholding Using Intelligent Signal Processing Algorithm

By Joseph Isabona Agbotiname Lucky Imoize Stephen Ojo

DOI: https://doi.org/10.5815/ijigsp.2023.05.01, Pub. Date: 8 Oct. 2023

Denoising is a vital aspect of image preprocessing, often explored to eliminate noise in an image to restore its proper characteristic formation and clarity. Unfortunately, noise often degrades the quality of valuable images, making them meaningless for practical applications. Several methods have been deployed to address this problem, but the quality of the recovered images still requires enhancement for efficient applications in practice. In this paper, a wavelet-based universal thresholding technique that possesses the capacity to optimally denoise highly degraded noisy images with both uniform and non-uniform variations in illumination and contrast is proposed. The proposed method, herein referred to as the modified wavelet-based universal thresholding (MWUT), compared to three state-of-the-art denoising techniques, was employed to denoise five noisy images. In order to appraise the qualities of the images obtained, seven performance indicators comprising the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Structural Content (SC), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Signal-to-Reconstruction-Error Ratio (SRER), Blind Spatial Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) were employed. The first five indicators – RMSE, MAE, SC, PSNR, SSIM, and SRER- are reference indicators, while the remaining two – NIQE and BRISQUE- are referenceless. For the superior performance of the proposed wavelet threshold algorithm, the SC, PSNR, SSIM, and SRER must be higher, while lower values of NIQE, BRISQUE, RMSE, and MAE are preferred. A higher and better value of PSNR, SSIM, and SRER in the final results shows the superior performance of our proposed MWUT denoising technique over the preliminaries. Lower NIQE, BRISQUE, RMSE, and MAE values also indicate higher and better image quality results using the proposed modified wavelet-based universal thresholding technique over the existing schemes. The modified wavelet-based universal thresholding technique would find practical applications in digital image processing and enhancement.

[...] Read more.
A Review of Self-supervised Learning Methods in the Field of Medical Image Analysis

By Jiashu Xu

DOI: https://doi.org/10.5815/ijigsp.2021.04.03, Pub. Date: 8 Aug. 2021

In the field of medical image analysis, supervised deep learning strategies have achieved significant development, while these methods rely on large labeled datasets. Self-Supervised learning (SSL) provides a new strategy to pre-train a neural network with unlabeled data. This is a new unsupervised learning paradigm that has achieved significant breakthroughs in recent years. So, more and more researchers are trying to utilize SSL methods for medical image analysis, to meet the challenge of assembling large medical datasets. To our knowledge, so far there still a shortage of reviews of self-supervised learning methods in the field of medical image analysis, our work of this article aims to fill this gap and comprehensively review the application of self-supervised learning in the medical field. This article provides the latest and most detailed overview of self-supervised learning in the medical field and promotes the development of unsupervised learning in the field of medical imaging. These methods are divided into three categories: context-based, generation-based, and contrast-based, and then show the pros and cons of each category and evaluates their performance in downstream tasks. Finally, we conclude with the limitations of the current methods and discussed the future direction.

[...] Read more.
Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning

By A. B. M. Aowlad Hossain Jannatul Kamrun Nisha Fatematuj Johora

DOI: https://doi.org/10.5815/ijigsp.2023.01.02, Pub. Date: 8 Feb. 2023

Ultrasound based breast screening is gaining attention recently especially for dense breast. The technological advancement, cancer awareness, and cost-safety-availability benefits lead rapid rise of breast ultrasound market. The irregular shape, intensity variation, and additional blood vessels of malignant cancer are distinguishable in ultrasound images from the benign phase. However, classification of breast cancer using ultrasound images is a difficult process owing to speckle noise and complex textures of breast. In this paper, a breast cancer classification method is presented using VGG16 model based transfer learning approach. We have used median filter to despeckle the images. The layers for convolution process of the pretrained VGG16 model along with the maxpooling layers have been used as feature extractor and a proposed fully connected two layers deep neural network has been designed as classifier. Adam optimizer is used with learning rate of 0.001 and binary cross-entropy is chosen as the loss function for model optimization. Dropout of hidden layers is used to avoid overfitting. Breast Ultrasound images from two databases (total 897 images) have been combined to train, validate and test the performance and generalization strength of the classifier. Experimental results showed the training accuracy as 98.2% and testing accuracy as 91% for blind testing data with a reduced of computational complexity. Gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions localization effort at the final convolutional layer and found as noteworthy. The outcomes of this work might be useful for the clinical applications of breast cancer diagnosis.

[...] Read more.
Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2015.02.06, Pub. Date: 8 Jan. 2015

Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

[...] Read more.
Retinal Image Segmentation for Diabetic Retinopathy Detection using U-Net Architecture

By Swapnil V. Deshmukh Apash Roy Pratik Agrawal

DOI: https://doi.org/10.5815/ijigsp.2023.01.07, Pub. Date: 8 Feb. 2023

Diabetic retinopathy is one of the most serious eye diseases and can lead to permanent blindness if not diagnosed early. The main cause of this is diabetes. Not every diabetic will develop diabetic retinopathy, but the risk of developing diabetes is undeniable. This requires the early diagnosis of Diabetic retinopathy. Segmentation is one of the approaches which is useful for detecting the blood vessels in the retinal image. This paper proposed the three models based on a deep learning approach for recognizing blood vessels from retinal images using region-based segmentation techniques. The proposed model consists of four steps preprocessing, Augmentation, Model training, and Performance measure. The augmented retinal images are fed to the three models for training and finally, get the segmented image. The proposed three models are applied on publically available data set of DRIVE, STARE, and HRF. It is observed that more thin blood vessels are segmented on the retinal image in the HRF dataset using model-3. The performance of proposed three models is compare with other state-of-art-methods of blood vessels segmentation of DRIVE, STARE, and HRF datasets.

[...] Read more.
Real-Time Video based Human Suspicious Activity Recognition with Transfer Learning for Deep Learning

By Indhumathi .J Balasubramanian .M Balasaigayathri .B

DOI: https://doi.org/10.5815/ijigsp.2023.01.05, Pub. Date: 8 Feb. 2023

Nowadays, the primary concern of any society is providing safety to an individual. It is very hard to recognize the human behaviour and identify whether it is suspicious or normal. Deep learning approaches paved the way for the development of various machine learning and artificial intelligence. The proposed system detects real-time human activity using a convolutional neural network. The objective of the study is to develop a real-time application for Activity recognition using with and without transfer learning methods. The proposed system considers criminal, suspicious and normal categories of activities. Differentiate suspicious behaviour videos are collected from different peoples(men/women). This proposed system is used to detect suspicious activities of a person. The novel 2D-CNN, pre-trained VGG-16 and ResNet50 is trained on video frames of human activities such as normal and suspicious behaviour. Similarly, the transfer learning in VGG16 and ResNet50 is trained using human suspicious activity datasets. The results show that the novel 2D-CNN, VGG16, and ResNet50 without transfer learning achieve accuracy of 98.96%, 97.84%, and 99.03%, respectively. In Kaggle/real-time video, the proposed system employing 2D-CNN outperforms the pre-trained model VGG16. The trained model is used to classify the activity in the real-time captured video. The performance obtained on ResNet50 with transfer learning accuracy of 99.18% is higher than VGG16 transfer learning accuracy of 98.36%. 

[...] Read more.
Mobile-Based Skin Disease Diagnosis System Using Convolutional Neural Networks (CNN)

By M.W.P Maduranga Dilshan Nandasena

DOI: https://doi.org/10.5815/ijigsp.2022.03.05, Pub. Date: 8 Jun. 2022

This paper presents a design and development of an Artificial Intelligence (AI) based mobile application to detect the type of skin disease. Skin diseases are a serious hazard to everyone throughout the world. However, it is difficult to make accurate skin diseases diagnosis. In this work, Deep learning algorithms Convolution Neural Networks (CNN) is proposed to classify skin diseases on the HAM10000 dataset. An extensive review of research articles on object identification methods and a comparison of their relative qualities were given to find a method that would work well for detecting skin diseases. The CNN-based technique was recognized as the best method for identifying skin diseases. A mobile application, on the other hand, is built for quick and accurate action. By looking at an image of the afflicted area at the beginning of a skin illness, it assists patients and dermatologists in determining the kind of disease present. Its resilience in detecting the impacted region considerably faster with nearly 2x fewer computations than the standard MobileNet model results in low computing efforts. This study revealed that MobileNet with transfer learning yielding an accuracy of about 85% is the most suitable model for automatic skin disease identification. According to these findings, the suggested approach can assist general practitioners in quickly and accurately diagnosing skin diseases using the smart phone.

[...] Read more.
A Review on Image Reconstruction through MRI k-Space Data

By Tanuj Kumar Jhamb Vinith Rejathalal V.K. Govindan

DOI: https://doi.org/10.5815/ijigsp.2015.07.06, Pub. Date: 8 Jun. 2015

Image reconstruction is the process of generating an image of an object from the signals captured by the scanning machine. Medical imaging is an interdisciplinary field combining physics, biology, mathematics and computational sciences. This paper provides a complete overview of image reconstruction process in MRI (Magnetic Resonance Imaging). It reviews the computational aspect of medical image reconstruction. MRI is one of the commonly used medical imaging techniques. The data collected by MRI scanner for image reconstruction is called the k-space data. For reconstructing an image from k-space data, there are various algorithms such as Homodyne algorithm, Zero Filling method, Dictionary Learning, and Projections onto Convex Set method. All the characteristics of k-space data and MRI data collection technique are reviewed in detail. The algorithms used for image reconstruction discussed in detail along with their pros and cons. Various modern magnetic resonance imaging techniques like functional MRI, diffusion MRI have also been introduced. The concepts of classical techniques like Expectation Maximization, Sensitive Encoding, Level Set Method, and the recent techniques such as Alternating Minimization, Signal Modeling, and Sphere Shaped Support Vector Machine are also reviewed. It is observed that most of these techniques enhance the gradient encoding and reduce the scanning time. Classical algorithms provide undesirable blurring effect when the degree of phase variation is high in partial k-space. Modern reconstructions algorithms such as Dictionary learning works well even with high phase variation as these are iterative procedures.

[...] Read more.