Analysis of Multi-modal Biometrics System for Gender Classification Using Face, Iris and Fingerprint Images

Full Text (PDF, 970KB), PP.34-43

Views: 0 Downloads: 0

Author(s)

Abhijit Patil 1,* Kruthi R 2 Shivanand S. Gornale 1

1. Department of Computer Science, Rani Channamma University, Belagavi, India

2. Department of Computer Science, Jain University, Bangalore, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2019.05.04

Received: 9 Feb. 2019 / Revised: 2 Mar. 2019 / Accepted: 21 Mar. 2019 / Published: 8 May 2019

Index Terms

Gender Identification, Biometrics, Multimodal, MB-LBP, BSIF, KNN, SVM

Abstract

A certain number of researchers have utilized uni-modal bio-metric traits for gender classification. It has many limitations which can be mitigated with inclusion of multiple sources of biometric information to identify or classify user’s information. Intuitively multimodal systems are more reliable and viable solution as multiple independent characteristics of modalities are fused together. The objective of this work is inferring the gender by combining different biometric traits like face, iris, and fingerprints of same subject. In the proposed work, feature level fusion is considered to obtain robustness in gender determination; and an accuracy of 99.8% was achieved on homologous multimodal biometric database SDUMLA-HMT (Group of Machine Learning and Applications, Shandong University). The results demonstrate that the feature level fusion of Multimodal Biometric system greatly improves the performance of gender classification and our approach outperforms the state-of-the-art techniques noticed in the literature.

Cite This Paper

Abhijit Patil, Kruthi R, Shivanand Gornale, " Analysis of Multi-modal Biometrics System for Gender Classification Using Face, Iris and Fingerprint Images", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.11, No.5, pp. 34-43, 2019. DOI: 10.5815/ijigsp.2019.05.04

Reference

[1]S. S Gornale and Kruti R, ”Analysis of fingerprint image for gender classification using spatial and frequency domain analysis” American International Journal of Research in Science, Technology, Engineering & Mathematics (AIJRSTEM), ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629. Issue 3, Volume 1, pp. 46-50, June-August, 2013. 

[2]S.S Gornale and Kruti R “Fusion of Fingerprint and Age Biometric for Gender Classification Using Frequency and Texture Analysis” Signal & Image Processing: An International Journal (SIPIJ) Vol.5, No.6, December 2014. DOI: 10.5121/sipij.2014.5606, pp.: 76-85, ISSN 0976-710X ( online); 2229-3922(print).

[3]S.S Gornale, “Fingerprint Based Gender Classification for Biometric Security: A State-Of-The-Art Technique”, International Journal of Research in Science, Technology, Engineering & Mathematics ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629, Vol.4 No. Issue- 3, pp.: 39-49.Dec-2014- Feb-2015. 

[4]S.S Gornale, “Fingerprint Based Gender Classification Using Minutiae Extraction”, International Journal of Advanced Research in Computer Science (IJARCS), ISSN 0976-5697, pp.: 72-77, Volume 6, No. 1, January-February 2015.

[5]S.S Gornale ,Basavanna M and Kruthi R ,“Gender Classification Using Fingerprints Based On Support Vector Machines (SVM) With 10-Cross Validation Technique”, International Journal of Scientific & Engineering Research (ISSN 2229-5518) Volume 6, Issue 7, July 2015

[6]S.S Gornale, Malikarjun Hangarge, Rajmohan P, Kruthi R, “Haralick Feature Descriptors for Gender Classification Using Fingerprints: A Machine Learning Approach”, International Journal of Advanced Research in Computer Science and Software Engineering”, Volume 5, Issue 9, September 2015 ISSN: 2277 128X, pp.:72-78.

[7]S.S Gornale, Abhijit Patil and Veersheety C, “Fingerprint based Gender Identification using Discrete Wavelet Transform and Gabor Filters”, International Journal of Computer Applications (0975 – 8887) Volume 152 – No.4, pp.:34-37, October-2016.

[8]S.S Gornale, Basavanna M, and Kruti R, “Fingerprint Based Gender Classification Using Local Binary Pattern”, International Journal of Computational Intelligence Research  ISSN 0973-1873 Volume 13, Number 2 (2017),pp.:261-271 © Research India Publications http://www.ripublication.com

[9]S.S Gornale, Abhijit Patil and Kruti R , “Fusion of Gabor Wavelet and Local Binary Patterns(LBP) Features sets for Gender Identification using Palm prints”, International Journal of Imaging Science and Engineering(IJISE), Published by International Technology Foundation of Research (ITFR) ISSN: 1934-9955 Vol. 10, Issue-2, pp.:1-6.June-2018 

[10]Kruti R , Abhijit Patil and S.S Gornale ,”Fusion of Local Binary Pattern and Local Phase Quantization features set for Gender Classification using Fingerprints”, International Journal of Computer Sciences and Engineering,vol.7 ,issue 1, pp.:22-29.Feb -2019.

[11]S .S Gornale and Abhijit Patil,” Statistical Features Based Gender Identification Using SVM”, International Journal for Scientific Research and Development, issue 8, pp.:241-244, ISSN: 2321 0613, 2016.       

[12]K.S. Arun and K.S. Sarath,” A machine learning approach for fingerprint based gender identification, 2011 IEEE Recent Advances in Intelligent Computational Systems, ISBN: 978-1-4244-9478-1, pp.:22-24 Sept. 2011.

[13]Rijo Jackson Tom, T.Arulkumara,” Fingerprint Based Gender Classification Using 2D Discrete Wavelet Transforms and Principal Component Analysis” International Journal of Engineering Trends and Technology- Volume4Issue 2 2013.

[14]Mangesh K. Shinde ; S.A. Annadate,” Analysis of Fingerprint Image for Gender Classification or Identification: Using Wavelet Transform and Singular Value Decomposition”, International Conference on Computing Communication Control and Automation, IEEE DOI 10.1109.

[15]Zs. M. Kovacs Vajna, R. Rovatti, and M. Frazzoni, “Fingerprint ridge distance Computation methodologies, Pattern Recognition, vol. 1, pp. 69–80, 2000.

[16]Tapia J.E., Perez C.A., Bowyer K.W. (2015) “Gender Classification from Iris Images Using Fusion of Uniform Local Binary Patterns. In: Agapito L., Bronstein M., Rother C. (eds) Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science, vol. 8926. Springer, Cham.

[17]Zhang H., Sun Z., Tan T., Wang J. (2011) “Ethnic Classification Based on Iris Images”,  In: Sun Z., Lai J., Chen X., Tan T. (eds) Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, Vol 7098. Springer, Berlin, Heidelberg.

[18]S. Aryanmehr, Fanny Dufoss, Farsad Zamani Boroujeni . “CVBL IRIS Gender Classification Database Image Processing and Biometric Research, Computer Vision and Biometric Laboratory (CVBL)”, 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). 2018.

[19]Shruti Nagpal , Mayank Vatsa ; Richa Singh ; Afzel Noore ; Angshul Majumdar Maneet Singh , “Gender and ethnicity classification of Iris images using deep class-encoder”, 2017 IEEE International Joint Conference on Biometrics (IJCB), DOI: 10.1109/BTAS.2017.8272755, ISSN: 2474-9699, Denver, CO, USA.2017.

[20]W Ming and Y Yuan, “Gender Classification Based on Geometrical Features of Palmprint Images”, The Scientific World Journal vol.2014.Article Id: 734564, pp.: 7 2014.

[21]Gholamerza Amayeh, Gorge Bebis and Mircea Nicolescu , “Gender Classification from Hand Shapes”, 2008 IEEE society conference on Computer Vision and Pattern Recognition workshop, 2008, pp.:1-7 DOI: 10.11.09/ Computer Vision and Pattern Recognition workshop.

[22]S.S Gornale ,Abhijit Patil and Kruti R ,” Fusion Of Gabor Wavelet And Local Binary Patterns (LBP) Features Sets For Gender Identification Using Palmprints”, International journal of Imaging Science and Engineering,Vol.10,Issue No.2,April2018.

[23]G. Azzopardi, A. Greco, A. Saggese and M. Vento, "Fast gender recognition in videos using a novel descriptor based on the gradient magnitudes of facial landmarks," 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, 2017, pp.: 1-6.doi: 10.1109/AVSS.2017.8078525.2017

[24]Zhihuai Xie, Zhenhua G and Chengshan Q,” Palmprint gender classification by Convolution neural network”, IET Computer Vision, Vol 12, Issue 4 pp.:476-483 ,2018, 

[25]Yilong Yin, Lili Liu, and Xiwei Sun,” SDUMLA-HMT: A Multimodal Biometric Database”, The 6th Chinese Conference on Biometric Recognition (CCBR 2011), LNCS 7098, pp.: 260-268, Beijing, China, 2011.

[26]Paul Viola and MichaelJ. Jones. 2004. Robust Real-Time Face Detection. International Journal of Computer Vision 57, Vol.2, pp.: 137–154 (2004).

[27]Len Bui ; Dat Tran ; Xu Huang ; Girija Chetty,  “Classification of gender and face based on gradient faces”, 3rd European Workshop on Visual Information Processing, 10.1109/EuVIP.2011.6045544 Paris, France -July 2011.

[28]Arnulf B. A. Graf and Felix A. Wichmann, “Gender Classification of Human Faces”, Biologically Motivated Computer Vision, eds. H.H. B¨ulthoff, S.-W. Lee, T.A. Poggio and C. Wallraven, LNCS 2525, pp.: 491-501, 2002, Springer Verlag, Heidelberg.

[29]S.Ravi, S.Wilson, “Face Detection with Facial Features and Gender Classification Based On Support Vector Machine”, 2010 Special Issue - International Journal of Imaging Science and Engineering,

[30]Abul Hasnat ; Santanu Haider ; Debotosh Bhattacharjee ; Mita Nasipuri , “A proposed system for gender classification using lower part of face image:, 2015 International Conference on Information Processing (ICIP), DOI: 10.1109/INFOP.2015.7489451, ISBN: 978-1-4673-7758-4, Pune, India.

[31]Burhan Ergen and Serdar Abut, "Gender Recognition Using Facial Images" In proceedings of International Conference on Agriculture and Biotechnology IPCBEE vol.60  IACSIT Press, Singapore,V.60. 22, pp.: 112-117, (2013).

[32]M. Castrilln, J. Lorenzo-Navarro, and E. Ramn-Balmaseda,“ Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild”, Image Vision Computing. Vol.57, pp.: 15-24 January 2017.

[33]A. Jain,J. Huang and S. Fang, "Gender identification using frontal facial images," 2005 IEEE International Conference on Multimedia and Expo, 2005.

[34]Jakub Walczak, Adam Wojciechowski, " Improved gender classification using Discrete Wavelet Transform and hybrid Support Vector Machine", Machine GRAPHICS & VISION vol. 25, no. pp.: 27-34, April,2016

[35]Hadi Harb , Liming Chen ,” Voice-Based Gender Identification in Multimedia Applications“, Journal of Intelligent Information Systems, vol.24: pp.: 179, 2005.

[36]Rafik Djemili ; Hocine Bourouba ; Mohamed Cherif Amara Korba,” A speech signal based gender identification system using four classifiers”, 2012 International Conference on Multimedia Computing and Systems ,ISBN no.978-1-4673-1520-3, 2012.

[37]Daniel Reid, Sina Samangooei, Cunjian Chen, Mark Nixon, and Arun Ross. 2013. So. biometrics for surveillance: an overview. Machine learning: theory and applications. Elsevier  pp.: 327–352,2013,

[38]L Walawalkar, M. Yeasin, A. Narasimhamurthy, and R. Sharma. Support vector learning for gender classification using audio and visual cues. International Journal of Pattern Recognition and Artificial Intelligence, Vol.17 issue 3 pp.:417–439, 2003.

[39]X. Li, X. Zhao, H. Liu, Y. Fu and Y. Liu, "Multimodality gender estimation using Bayesian hierarchical model," 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, pp.: 5590-5593. doi: 10.1109/ICASSP.2010.5495242.2010.

[40]Mohamed Abouelenien, Veronica Perez-Rosas , Rada Mihalcea , and Mihai Burzo, “Multimodal Gender Detection” , in Proceedings of ICMI ’17, Glasgow, UK, November , pp.: 302-311.ISBN no. 978-1-4503-5543-8.2017. 2017.

[41]A. Hadid and M. Pietikainen, "Combining motion and appearance for gender classification from video sequences", 2008 19th International Conference on Pattern Recognition, Tampa, Florida, 2008, pp.: 1-4.doi: 10.1109/ICPR.2008.4760995.

[42]Caifeng Shan and Shaogang Gong and McOwan, Peter W,” Learning Gender from Human Gaits and Faces”,2007 IEEE Conference on Advanced Video and Signal Based Surveillance Washington, DC, USA.pp.:505-510,isbn 978-1-4244-1695-0.

[43]G. Prabhua, Poornima S, Minimize Search Time through Gender Classification from Multimodal Biometrics”, 2nd International Symposium on Big Data and Cloud Computing (ISBCC’15), Procedia Computer Science 50, pp.:289 – 294, 2015.

[44]Juho Kannala, E Rahtu, “Bsif: Binarized statistical image features”, IEEE International Conference on Pattern Recognition, (ICPR), pp.: 1363–1366, Nov.2012.

[45]Timo Ojala, Matti Pietikainen and Topi Maenpaa, “Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns". IEEE Transaction on Pattern Analysis and Machine Intelligence Vol.24 Issue 7, pp.:971–987, 2002.

[46]S.S Gornale ,Pooja U Patravali, Kiran S Marathe and Prakash Hiremath,”Determination of Osteoarthritis using Histogram of Oriented Gradients and Multiclass SVM”, International Journal of Image, Graphics and Signal Processing(IJIGSP),Vol.9,no.12,pp.:41-49.2017.DOI 10.5815/ijigsp.2017.12.05.

[47]Shivananda V. Seeri, J. D. Pujari and P. S. Hiremath, “Text Localization and Character Extraction in Natural Scene Images using Contourlet Transform and SVM Classifier”, International .Journal of. Image, Graphics and Signal Processing (IJIGSP), May 2016, Vol. 8, issue.5, pp.:36-42 DOI: 10.5815/ijigsp.2016.05.02,.

[48]S. S. Gornale, Pooja U. Patravali, Archana M. Uppin, Prakash S. Hiremath, "Study of Segmentation Techniques for Assessment of Osteoarthritis in Knee X-ray Images", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.11, issue.2, pp.: 48-57, 2019.DOI: 10.5815/ijigsp.2019.02.06.

[49]S. S. Gornale, Ashvini K Babaleshwar, Pravin L Yannawar," Detection and Classification of Signage’s from Random Mobile Videos Using Local Binary Patterns", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.10, issue.2, pp.: 52-59, 2018.DOI: 10.5815/ijigsp.2018.02.06

[50]Radha ShankarMani and Vijayalakshmi,”Big Data Analytics”, 2nd Edition, Wiley India Pvt.Ltt, ISBN 978-81-265-6575-7, 2017.

[51]Ramadan Gad, AYMAN EL-SAYED, Nawal El-Fishawy and  M. Zorkany,” Multi-Biometric Systems: A State of the Art Survey and Research Directions”, (IJACSA) International Journal of Advanced Computer Science and Applications Vol. 6, issue. 6, 2015

[52]Maneet Singh, Richa Singh and Arun Ross,” A Comprehensive Overview of Biometric Fusion”, Information Fusion, February 11, 2019.

[53]Chunyu Zhang, Hui ding, Yuanyuan Shang et al, “Gender Classification based on Multi scale Facial Fusion Features”, Hindawi Mathematical Problems in Engineering, Vol pp.:6 2018, ID: 1924151, , http://doi.org/10.1155/2018/924151.

[54]V.thomas. N.V.Chawla, K.VBowyer and P.J.Flynn, “Learning to predict gender from Iris Images”, Proceedings of 2007 First IEEE International conference on Biometrics Theory Applications and Systems, pp.: 1-5, Crystal City, VA, USA, September 2007.

[55]V.Singh, V shokeen and M.B.singh, “Comparison Of Feature Extraction Algorithms for Gender Classification From Face Images”, International Journal of Engineering Research and Technology, Vol 2, issue 5, pp.: 1313-1318, 2013.

[56]Linda N Groat, David Wang”, Architectural Research Methods, 2nd Edition, ISBN: 978-0-470-90855-6, April-2013, Wiley Publishing House.

[57]S .S Gornale, Abhijit Patil and Mallikarjun Hangarge and R Pardesi. (2019) Automatic Human Gender Identification Using Palmprint. In: Luhach A., Hawari K., Mihai I., Hsiung PA., Mishra R. (eds) Smart Computational Strategies: Theoretical and Practical Aspects. Springer, Singapore. ISBN: 978-981-13-6295-8, pp.: 49-58, 22 March 2019.DOI: https://doi.org/10.1007/978-981-13-6295-8_5.

[58]S .S Gornale, Abhijit Patil and Mallikarjun Hangarge ”Binarized Statistical Image Feature set for Palmprint based Gender Identification”, Book of abstract- International Conference on Machine Learning, Image Processing, Network Security and Data Sciences (MIND-2019) pp:61 3-4 march 2019 NIT Kurukshetra India.

[59]G. Azzopardi, A. Greco, A. Saggese and M. Vento, "Fusion of Domain-Specific and Trainable Features for Gender Recognition from Face Images," in IEEE Access, Vol. 6, pp.:24171-24183, 2018.doi:10.1109/ACCESS.2018.2823378.

[60]Vijaylaxmin G.V Mahesh and Alex Noel Joseph Raj “Zernike Moments and Machine Learning Based Gender Classification Using Facial Images”. In: Abraham A., Cherukuri A., Madureira A., Muda A. (eds) Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016). Advances in Intelligent Systems and Computing, Springer, Cham, ISBN; 978-3-319-60618-7, Vol 614, pp.: 398-408 DOI: https://doi.org/10.1007/978-3-319-60618-7_39.