Information Technology for Multiparametric Analysis of Laser Images of Biological Fluid Films in Biomedical Applications

Full Text (PDF, 630KB), PP.77-87

Views: 0 Downloads: 0

Author(s)

Yuriy Ushenko 1,* Ivan Gordey 1 Yuriy Tomka 1 Irina Soltys 2 Oksana Bakun 3 Zhengbing Hu 4

1. Computer Science Department,Yuriy Fedcovitch Chernivtsi National University, Chernivtsi, 58002, Ukraine

2. Optics and Publishing Department,Yuriy Fedcovitch Chernivtsi National University, Chernivtsi, 58002, Ukraine

3. Bucovinian State Medical University, Chernivtsi, 58000, Ukraine

4. School of Computer Science, Hubei University of Technology, Wuhan, China

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2023.05.06

Received: 10 Feb. 2023 / Revised: 18 Apr. 2023 / Accepted: 20 May 2023 / Published: 8 Oct. 2023

Index Terms

Laser, Polarization, Blood plasma, Birefringence, Statistics, Correlation, Fractal Analysis

Abstract

At the current moment, all developed polarization methods utilize "single-point" statistical analysis algorithms for laser fields. A relevant task is to generalize traditional techniques by incorporating new correlation-based "two-point" algorithms for the analysis of polarization images. Theoretical foundations of the mutual and autocorrelation processing of phase maps of polarization-structural images of samples of dehydrated serum films are given. The maps of a new polarization-correlation parameters, namely complex degree of coherence (CDC) and complex degree of mutual polarization (CDMP) of soft matter layer boundary field by the example of dehydrated serum film samples are investigated. Two groups of representative samples, uterine myoma patients (control group 1) and patients with external genital endometriosis (study group 2), were considered. We applied a complex algorithm of analytical data processing - statistical (1stand 4th central statistical moments), correlation (Gram-Charlie expansion coefficients of autocorrelation functions) and fractal (fractal dimensions) parameters of polarization-correlation parameters maps. Objective markers for diagnosing extragenital endometriosis were found.

Cite This Paper

Yuriy Ushenko, Ivan Gordey, Yuriy Tomka, Irina Soltys, Oksana Bakun, Zhengbing Hu, "Information Technology for Multiparametric Analysis of Laser Images of Biological Fluid Films in Biomedical Applications", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.15, No.5, pp. 77-87, 2023. DOI:10.5815/ijigsp.2023.05.06

Reference

[1]Ushenko, A. G. & Pishak, V. P. Laser Polarimetry of Biological Tissues: Principles and Applications. in Handbook of Coherent Domain Optical Methods (ed. Tuchin, V. V. (Valeriĭ V.) 93–138 (Springer US, 2004). doi:10.1007/0-387-29989-0_3.
[2]Ghosh, N. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16, 110801 (2011).
[3]Jacques, S. L. Polarized light imaging of biological tissues. in Handbook of Biomedical Optics2 (eds. Boas, D., Pitris, C. & Ramanujam, N.) 649–669 (CRC Press, 2011).
[4]Vitkin, A., Ghosh, N. & de Martino, A. Tissue Polarimetry. in Photonics: Scientific Foundations, Technology and Applications (ed. Andrews, D. L.) 239–321 (John Wiley & Sons, Ltd, 2015).
[5]Anton Sdobnov, Volodymir A. Ushenko, Liliya Trifonyuk, Oksana Bakun, Marta Garazdyuk, Irina V. Soltys, Olexander Dubolazov, Olexander G. Ushenko, Yuriy A. Ushenko, Alexander Bykov, Igor Meglinski,,Mueller-matrix imaging polarimetry elevated by wavelet decomposition and polarization-singular processing for analysis of specific cancerous tissue pathology, J. Biomed. Opt. 28(10), 102903 (2023), doi: 10.1117/1.JBO.28.10.102903
[6]Ushenko, Y. A., Boychuk, T. M., Bachynsky, V. T. & Mincer, O. P. Diagnostics of Structure and Physiological State of Birefringent Biological Tissues: Statistical, Correlation and Topological Approaches. in Handbook of Coherent-Domain Optical Methods (ed. Tuchin, V. V. (Valeriĭ V.) vols 1–2 107–148 (Springer New York, 2013).
[7]P O Angelsky, A G Ushenko, A V Dubolazov, M I Sidor, G B Bodnar, G Koval and L Trifonyuk. The singular approach for processing polarization-inhomogeneous laser images of blood plasma layers// Journal of Optics, 2013Volume 15, Number 4
[8]Vasyl P Pishak, Alexander G Ushenko, Petro Gryhoryshyn, et. al. Polarization structure of biospeckle fields in crosslinked tissues of a human organism: 1. Vector structure of skin biospeckles// Proceedings Volume 3317, International Conference on Correlation Optics; (1997) https://doi.org/10.1117/12.295715
[9]Volodimir Ushenko, Anton Sdobnov, Anna Syvokorovskaya, et.al. 3D Mueller-Matrix Diffusive Tomography of Polycrystalline Blood Films for Cancer Diagnosis//Photonics 2018, 5(4), 54.
[10]N. I. Zabolotna, S. V. Pavlov, et.al. “System of the phase tomography of optically anisotropic polycrystalline films of biological fluids” Proceedings Volume 9166, Biosensing and Nanomedicine VII; 916616 (2014)
[11]G Ushenko, A. V. Dubolazov, V. O. Balanets'ka, A. V. Karachevtsev, M. Sydor. Wavelet analysis for polarization inhomogeneous laser images of blood plasma//Proceedings Volume 8338, Tenth International Conference on Correlation Optics; 83381H (2011)
[12]Ushenko, V.A., Hogan, B.T., Dubolazov, A., Grechina, A.V., Boronikhina, T.V., Gorsky, M., Ushenko, A.G., Ushenko, Y.O., Bykov, A., Meglinski, I.Embossed topographic depolarisation maps of biological tissues with different morphological structures, (2021) Scientific Reports, 11 (1), № 3871.
[13]Peyvasteh, M., Tryfonyuk, L., Ushenko, V., Syvokorovskaya, A.-V., Dubolazov, A., Vanchulyak, O., Ushenko, A., Ushenko, Y., Gorsky, M., Sidor, M., Tomka, Y., Soltys, I., Bykov, A., Meglinski, I., 3D Mueller-matrix-based azimuthal invariant tomography of polycrystalline structure within benign and malignant soft-tissue tumours, (2020) Laser Physics Letters, 17 (11), 115606.
[14]Trifonyuk, L., Strashkevich, A., Pavlyukovich, N., Pavlyukovich, A., Tomka, Yu., Zhitaryuk, V., Tkachuk, V.I. Polarization interference mapping of microscopic images of protein fluorofores in the differential diagnosis of benign and malignant prostate tumours (2021) Proceedings of SPIE - The International Society for Optical Engineering, 12126, 1212628.
[15]Trifonyuk, L., Strashkevich, A., Kozlov, S., Davidenko, I., Poliansky, I., Pavlyukovich, N., Pavlyukovich, A., Tomka, Yu., Fesiv, I.V., Ushenko, Yu.A., Talakh, M., Gorodenskiy, P.A., Gantyuk, V.K. Digital microscopic mapping of laser induced polarization ellipticity maps in differential diagnostics of preparations of benign and malignant prostate tumours (2021) Proceedings of SPIE - The International Society for Optical Engineering, 12126, 1212627.
[16]Kvasniuk, D., Trifonyuk, L., Strashkevich, A., Kozan, N., Ushenko, V., Dunaiev, O., Kryvetskyi, V., Oliinyk, I., Kurek, E.I., Tkachuk, V.I. Detection of pathological changes in the architectonics of polycrystalline blood films using laser-induced polarization interferometry (2021) Proceedings of SPIE - The International Society for Optical Engineering, 12126, 1212629.
[17]Beam coherence polarization matrix / F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Guattari // Pure Appl. Opt. – 1998. – Vol. 7. – P. 941-951.
[18]J. Tervo, T. Setala, A. Friberg, “Two-point Stokes parameters: interpretation and properties," Optics Letters 34(20), 3074 - 3076 (2009).
[19]Ushenko Yu. A. Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotropy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues / Yu. A. Ushenko, M. P. Gorskii, A. V. Dubolazov, A. V. Motrich, V. A. Ushenko, M. I. Sidor // Quantum Electron, 2012, Volume 42(8).
[20]Ushenko V. A. Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer / V. A. Ushenko, M. P. Gorsky. // Optics and Spectroscopy, August 2013, Volume 115, Issue 2, pp 290-297.
[21]Yu. A. Ushenko, V. T. Bachynsky, O. Ya. Vanchulyak, A. V. Dubolazov, M. S. Garazdyuk, and V. A. Ushenko, “Jones-matrix mapping of complex degree of mutual anisotropy of birefringent protein networks during the differentiation of myocardium necrotic changes,” Appl. Opt. 55, B113-B119 (2016).
[22]Alexander Ushenko, Anton Sdobnov, Alexander Dubolazov, Marta Gritsuk, Yurii Ushenko, Alexander Bykov, Igor Meglinski, “Stokes-Correlometry Analysis of Biological Tissues with Polycrystalline Structure,” IEEE Journal of Selected Topics in Quantum Electronics 25, 7101612 (2018).
[23]Motahareh Peyvasteh, Alexander Dubolazov, Alexey Popov, Alexander Ushenko, Yuriy Ushenko and Igor Meglinski, “Two-point Stokes vector diagnostic approach for characterization of optically anisotropic biological tissues,” J. Phys. D: Appl. Phys. 53, 395401 (2020).
[24]Ushenko, V.A., Hogan, B.T., Dubolazov, A. et al. 3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues. Sci Rep 11, 5162 (2021). https://doi.org/10.1038/s41598-021-83986-4
[25]Zhengbing Hu, Ihor Tereikovskyi, Denys Chernyshev, Liudmyla Tereikovska, Oleh Tereikovskyi, Dong Wang, " Procedure for Processing Biometric Parameters Based on Wavelet Transformations ", International Journal of Modern Education and Computer Science, Vol.13, No.2, pp. 11-22, 2021.
[26]Yuriy O. Ushenko, Yuriy Ya. Tomka, Igor Z. Misevitch, Vadim V. Istratyy, and Olga I. Telenga "Complex degree of mutual anisotropy of biological liquid crystals nets," Optical Engineering 50(3), 039001 (1 March 2011). https://doi.org/10.1117/1.3558850
[27]Zhengbing Hu, Sergiy Gnatyuk, Tetiana Okhrimenko, Sakhybay Tynymbayev, Maksim Iavich, "High-Speed and Secure PRNG for Cryptographic Applications", International Journal of Computer Network and Information Security, Vol.12, No.3, pp.1-10, 2020.
[28]S. P. Robinson, Principles of forensic medicine, Cambridge University Press (1996).