IJIGSP Vol. 16, No. 1, 8 Feb. 2024
Cover page and Table of Contents: PDF (size: 637KB)
Full Text (PDF, 637KB), PP.14-24
Views: 0 Downloads: 0
Laser, Polarization, Singularities, Mueller matrix, Birefringence, Biological Tissues, Statistical Analysis
Traditional methods of imaging Muller-matrix polarimetry ensure obtaining large arrays of experimental data in the form of 16 Muller-matrix images. Processing and comparative analysis of the received information is quite time-consuming and requires a long time. A new algorithmic polarization-singular approach to the analysis of coordinate distributions of matrix elements (Mueller-matrix maps) of polycrystalline birefringent structure of biological tissues is considered. A Mueller-matrix model for describing the optical anisotropy of biological layers is proposed. Analytical correlations between polarization-singular states of the object field and characteristic values of Mueller-matrix images of birefringence soft tissue objects were found. The proposed algorithmic polarization-singular theory is experimentally verified. Examples of polarization singularities networks of Mueller-matrix maps of histological preparations of real tissues of female reproductive sphere are given. Diagnostic possibilities of the developed polarization-singular algorithms in diagnostics and differentiation of the stages of extragenital endometriosis are illustrated. Another area of biomedical diagnostics has been successfully tested: polarization-singular criteria for forensic Mueller-matrix determination of the age of myocardial injury of the deceased have been defined.
Liliya Diachenko, Edgar Vatamanitsa, Oleksandr Ushenko, Oleksandr Salega, Oleksandra Litvinenko, Zhengbing Hu, "Algorithms for Polarization-singular processing of Mueller-matrix images of Soft Tissues for Biomedical Applications", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.16, No.1, pp. 14-24, 2024. DOI:10.5815/ijigsp.2024.01.02
[1]Ghosh, N. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16, 110801 (2011).
[2]Jacques, S. L. Polarized light imaging of biological tissues. in Handbook of Biomedical Optics2 (eds. Boas, D., Pitris, C. & Ramanujam, N.) 649–669 (CRC Press, 2011).
[3]Vitkin, A., Ghosh, N. & de Martino, A. Tissue Polarimetry. in Photonics: Scientific Foundations, Technology and Applications (ed. Andrews, D. L.) 239–321 (John Wiley & Sons, Ltd, 2015).
[4]P O Angelsky, A G Ushenko, A V Dubolazov, M I Sidor, G B Bodnar, G Koval and L Trifonyuk. The singular approach for processing polarization-inhomogeneous laser images of blood plasma layers// Journal of Optics, 2013Volume 15, Number 4
[5]Vasyl P Pishak, Alexander G Ushenko, Petro Gryhoryshyn, Serhiy B Yermolenko, Volodymyr M Rudeychuk, Olga V Pishak. Polarization structure of biospeckle fields in crosslinked tissues of a human organism: 1. Vector structure of skin biospeckles// Proceedings Volume 3317, International Conference on Correlation Optics; (1997) https://doi.org/10.1117/12.295715
[6]Volodimir Ushenko, Anton Sdobnov, Anna Syvokorovskaya, et.al. 3D Mueller-Matrix Diffusive Tomography of Polycrystalline Blood Films for Cancer Diagnosis//Photonics 2018, 5(4), 54.
[7]N. I. Zabolotna, S. V. Pavlov, A. G. Ushenko, A. O. Karachevtsev, V. O. Savich, O. V. Sobko, O. V. Olar “System of the phase tomography of optically anisotropic polycrystalline films of biological fluids,” Proceedings Volume 9166, Biosensing and Nanomedicine VII; 916616 (2014)
[8]O. G Ushenko, A. V. Dubolazov, V. O. Balanets'ka, A. V. Karachevtsev, M. Sydor. Wavelet analysis for polarization inhomogeneous laser images of blood plasma//Proceedings Volume 8338, Tenth International Conference on Correlation Optics; 83381H (2011)
[9]Romuald Jóźwicki, Krzysztof Patorski et.al. Automatic polarimetric system for early medical diagnosis by biotissue testing Optica Applicata, Vol. XXXII, No. 4, 2002
[10]Nenad A. Marković, Slobodan N. Bjelić, Filip N. Marković, "Diagnostics Algorithms for Analysis and Assessment of Steady States and Disorders in Electrical Networks", International Journal of Image, Graphics and Signal Processing, Vol.14, No.4, pp. 1-12, 2022.
[11]Ushenko, V.A., Hogan, B.T., Dubolazov, A., Piavchenko, G., Kuznetsov, S.L., Ushenko, A.G., Ushenko, Y.O., Gorsky, M., Bykov, A., Meglinski, I. 3D Mueller matrix mapping of layered distributions of depolarization degree for analysis of prostate adenoma and carcinoma diffuse tissues (2021) Scientific Reports, 11 (1), 5162.
[12]Zhengbing Hu, Sergii V. Mashtalir, Oleksii K. Tyshchenko, Mykhailo I. Stolbovyi, "Video Shots’ Matching via Various Length of Multidimensional Time Sequences", International Journal of Intelligent Systems and Applications (IJISA), Vol.9, No.11, pp.10-16, 2017.
[13]Zhengbing Hu, Igor A. Tereykovskiy, Lyudmila O. Tereykovska, Volodymyr V. Pogorelov, "Determination of Structural Parameters of Multilayer Perceptron Designed to Estimate Parameters of Technical Systems", International Journal of Intelligent Systems and Applications, Vol.9, No.10, pp.57-62, 2017.
[14]Peyvasteh, M., Tryfonyuk, L., Ushenko, V., Syvokorovskaya, A.-V., Dubolazov, A., Vanchulyak, O., Ushenko, A., Ushenko, Y., Gorsky, M., Sidor, M., Tomka, Y., Soltys, I., Bykov, A., Meglinski, I. 3D Mueller-matrix-based azimuthal invariant tomography of polycrystalline structure within benign and malignant soft-tissue tumours (2020) Laser Physics Letters, 17 (11), 115606.
[15]D. Kasaragod, Z. Lu, J. Jacobs, and S. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 3(3), 378–387 (2012).
[16]Trifonyuk, L., Sdobnov, A., Baranowski, W., Ushenko, V., Olar, O., Dubolazov, A., Pidkamin, L., Sidor, M., Vanchuliak, O., Motrich, A., Gorsky, M., Meglinski, I. Differential Mueller matrix imaging of partially depolarizing optically anisotropic biological tissues (2020) Lasers in Medical Science, 35 (4), pp. 877-891.
[17]Alexander Ushenko, Anton Sdobnov, Alexander Dubolazov, Marta Gritsuk, Yurii Ushenko, Alexander Bykov, Igor Meglinski, “Stokes-Correlometry Analysis of Biological Tissues with Polycrystalline Structure,” IEEE Journal of Selected Topics in Quantum Electronics 25, 7101612 (2018).
[18]Motahareh Peyvasteh, Alexander Dubolazov, Alexey Popov, Alexander Ushenko, Yuriy Ushenko and Igor Meglinski, “Two-point Stokes vector diagnostic approach for characterization of optically anisotropic biological tissues,” J. Phys. D: Appl. Phys. 53, 395401 (2020).
[19]I. Freund, A. Mokhun, M. Soskin, et al., “Stokes singularity relations,” Opt. Lett. 27(7), 545–547 (2002).
[20]O. Angelsky, A. Mokhun, I. Mokhun, et al., “The relationship between topological characteristics of component vortices and polarization singularities,” Opt. Commun. 207(1-6), 57–65 (2002).
[21]O. Angelsky, A. Ushenko, Y. Ushenko, et al., “Polarization singularities of the object field of skin surface,” J. Phys. D. Appl. Phys. 39(16), 3547–3558 (2006).
[22]Feng J, Kim YK, Liu P., “Image Shadow Detection and Removal Based on Region Matching of Intelligent Computing”. Comput. Intell. Neurosci. 2022 Apr 20; 2022:7261551.
[23]V. Devlaminck, “Depolarizing differential Mueller matrix of homogeneous media under Gaussian fluctuation hypothesis,” J. Opt. Soc. Am. A 32(10), 1736–1743 (2015).
[24]Zhengbing Hu, Yulia Khokhlachova, Viktoriia Sydorenko, Ivan Opirskyy, "Method for Optimization of Information Security Systems Behavior under Conditions of Influences", International Journal of Intelligent Systems and Applications, Vol.9, No.12, pp.46-58, 2017.
[25]Anton Sdobnov, Volodymir A. Ushenko, Liliya Trifonyuk, Oksana Bakun, Marta Garazdyuk, Irina V. Soltys, Olexander Dubolazov, Olexander G. Ushenko, Yuriy A. Ushenko, Alexander Bykov, Igor Meglinski,,Mueller-matrix imaging polarimetry elevated by wavelet decomposition and polarization-singular processing for analysis of specific cancerous tissue pathology, J. Biomed. Opt. 28(10), 102903 (2023), doi: 10.1117/1.JBO.28.10.102903.