Glaucoma Detection and Severity Diagnosis from Fundus Images Using Dual CNN Architectures

PDF (1199KB), PP.17-31

Views: 0 Downloads: 0

Author(s)

G. Latha 1 P. Aruna Priya 1,*

1. Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2024.06.02

Received: 30 Oct. 2023 / Revised: 16 Dec. 2023 / Accepted: 23 Feb. 2024 / Published: 8 Dec. 2024

Index Terms

Glaucoma, Optic disk, Optic cup, retinal rim, YOLO

Abstract

Glaucoma, a series of progressive eye illnesses, is a primary worldwide health concern. Glaucoma, sometimes known as the "silent thief of sight," progressively affects the optic nerve, resulting in permanent vision loss and, in extreme instances, blindness. It is essential to recognize glaucoma in its earlier stages so that patients can receive treatment sooner and prevent further vision loss. An effective method for detecting glaucoma by analyzing retinal images with the assistance of a deep learning strategy is presented as a potential solution in this article. The framework presented for detecting glaucoma comprises two modules that rely on one another: the Retinal Image Classification Module (RICM) and the Retinal Image Diagnosis Module (RIDM). The retinal image is classified as either a normal or a glaucoma retinal image by the RICM module, which uses the CNN classifier. The RIDM detects the neuro rim region from the glaucoma retinal image by segmenting OD and OC, and the Dual Functional CNN (DFCNN) classifier is proposed to diagnose the severity stages of the glaucoma image based on the feature patterns that are extracted from the neuroretinal rim in the glaucoma image. Both low- and high-resolution retinal image datasets, known as HRF and PAPILA, are utilized in this study to investigate the proposed approaches for glaucoma identification and severity estimate. Compared to other methods considered to be state-of-the-art, the simulation's findings show that it is successful. Ophthalmologists benefit from the suggested model since it assists them in effectively recognizing glaucoma in patients, which in turn allows for improved diagnosis and the prevention of premature vision loss.

Cite This Paper

G. Latha, P. Aruna Priya, "Glaucoma Detection and Severity Diagnosis from Fundus Images Using Dual CNN Architectures", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.16, No.6, pp. 17-31, 2024. DOI:10.5815/ijigsp.2024.06.02

Reference

[1]Das, P., Nirmala, S.R. and Medhi, J.P., 2016. Diagnosis of glaucoma using CDR and NRR area in retina images. Network Modeling Analysis in Health Informatics and Bioinformatics, 5, pp.1-14.
[2]Senthil, S., Nakka, M., Sachdeva, V., Goyal, S., Sahoo, N. and Choudhari, N., 2021, November. Glaucoma Mimickers: A major review of causes, diagnostic evaluation, and recommendations. In Seminars in Ophthalmology Vol. 36, No. 8, pp. 692-712. 
[3]Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T. and Cheng, C.Y., 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 121(11), pp.2081-2090..
[4]Gupta, N., Garg, H. and Agarwal, R., 2021. A robust framework for glaucoma detection using CLAHE and EfficientNet. The Visual Computer, pp.1-14.
[5]David, D. Stalin, S. Selvi, S. Sivaprakash, P. Vishnu Raja, Dilip Kumar Sharma, Pankaj Dadheech, and Sudhakar Sengan, 2022 Enhanced Detection of Glaucoma on Ensemble Convolutional Neural Network for Clinical Informatics Computers, Materials & Continua 70, no. 2.
[6]Joshi, S., Partibane, B., Hatamleh, W.A., Tarazi, H., Yadav, C.S. and Krah, D., 2022. Glaucoma detection using image processing and supervised learning for classification. Journal of Healthcare Engineering, 2022, 2988262
[7]Singh, L.K., Pooja, Garg, H. and Khanna, M., 2022. Performance evaluation of various deep learning-based models for effective glaucoma evaluation using optical coherence tomography images. Multimedia Tools and Applications, 81(19), pp.27737-27781.
[8]Shinde, R., 2021. Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms. Intelligence-Based Medicine, 5, p.100038. 
[9]Ajitha, S., Akkara, J.D. and Judy, M.V., 2021. Identification of glaucoma from fundus images using deep learning techniques. Indian journal of ophthalmology, 69(10), p.2702.
[10]Guo, F., Li, W., Tang, J., Zou, B. and Fan, Z., 2020. Automated glaucoma screening method based on image segmentation and feature extraction. Medical & Biological Engineering & Computing, 58, pp.2567-2586.
[11]Muthmainah, M.U., Nugroho, H.A. and Winduratna, B., 2019, Glaucoma classification based on texture and morphological features. In 5th international conference on science and technology (ICST), IEEE (Vol. 1, pp. 1-6).
[12]Raghavendra, U., Gudigar, A., Bhandary, S.V., Rao, T.N., Ciaccio, E.J. and Acharya, U.R., 2019. A two layer sparse autoencoder for glaucoma identification with fundus images. Journal of medical systems, 43, pp.1-9.
[13]Parashar, D. and Agrawal, D.K., 2020. Automated classification of glaucoma stages using flexible analytic wavelet transform from retinal fundus images. IEEE Sensors Journal, 20(21), pp.12885-12894.
[14]Jiang, Y., Duan, L., Cheng, J., Gu, Z., Xia, H., Fu, H., Li, C. and Liu, J., 2019. JointRCNN: a region-based convolutional neural network for optic disc and cup segmentation. IEEE Transactions on Biomedical Engineering, 67(2), pp.335-343.
[15]Civit-Masot, J., Domínguez-Morales, M.J., Vicente-Díaz, S. and Civit, A., 2020. Dual machine-learning system to aid glaucoma diagnosis using disc and cup feature extraction. IEEE Access, 8, pp.127519-127529.
[16]Devecioglu, O.C., Malik, J., Ince, T., Kiranyaz, S., Atalay, E. and Gabbouj, M., 2021. Real-time glaucoma detection from digital fundus images using self-onns. IEEE Access, 9, pp.140031-140041.
[17]Kanhangad, V. and Pachori, R.B., 2019. Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Computers in Biology and Medicine, 105, 72-80.
[18]Gupta, N., Garg, H. and Agarwal, R., 2021. A robust framework for glaucoma detection using CLAHE and EfficientNet. The Visual Computer, pp.1-14.
[19]Tomaz Ribeiro Viana Bisneto, Antonio Oseas de Carvalho Filho, Deborah Maria Vieira Magalhães, 2020 Generative adversarial network and texture features applied to automatic glaucoma detection, Applied Soft Computing, Volume 90, 106165 
[20]Palma, C.A., Cappabianco, F.A., Ide, J.S. and Miranda, P.A., 2014. Anisotropic diffusion filtering operation and limitations-magnetic resonance imaging evaluation. IFAC Proceedings Volumes, 47(3), pp.3887-3892.
[21]HRF dataset: https://www5.cs.fau.de/research/data/fundus-images
[22]Kovalyk, O., Morales-Sánchez, J., Verdú-Monedero, R., Sellés-Navarro, I., Palazón-Cabanes, A. and Sancho-Gómez, J.L., 2022. PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Scientific Data, 9(1), p.291.
[23]PAPILA dataset: https://doi.org/10.6084/m9.figshare.14798004.v1
[24]Sánchez-Morales, A., Morales-Sánchez, J., Kovalyk, O., Verdú-Monedero, R. and Sancho-Gómez, J.L., 2022. Improving Glaucoma Diagnosis Assembling Deep Networks and Voting Schemes. Diagnostics, 12(6), p.1382.
[25]Hemelings, R., Elen, B., Schuster, A.K., Blaschko, M.B., Barbosa-Breda, J., Hujanen, P., Junglas, A., Nickels, S., White, A., Pfeiffer, N. and Mitchell, P., 2023. A generalizable deep learning regression model for automated glaucoma screening from fundus images. NPJ Digital Medicine, 6(1), p.112.
[26]Akbar, S., Hassan, S.A., Shoukat, A., Alyami, J. and Bahaj, S.A., 2022. Detection of microscopic glaucoma through fundus images using deep transfer learning approach. Microscopy Research and Technique, 85(6), pp.2259-2276.
[27]Abdel-Hamid, L., 2020. Glaucoma detection from retinal images using statistical and textural wavelet features. Journal of digital imaging, 33(1), pp.151-158.
[28]Nazir, T., Irtaza, A. and Starovoitov, V., 2021. Optic disc and optic cup segmentation for glaucoma detection from blur retinal images using improved mask-RCNN. International Journal of Optics, 2021, pp.1-12.
[29]Latif, J., Tu, S., Xiao, C., Ur Rehman, S., Imran, A. and Latif, Y., 2022. ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images. SN Applied Sciences, 4(4), p.98.
[30]https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets