Analysis of Multichannel Neurophysiological Signal for Identifying Epileptic Cases Using Hybrid Deep-Nets

PDF (1975KB), PP.55-71

Views: 0 Downloads: 0

Author(s)

Shipra Swati 1 Mukesh Kumar 1,*

1. Department of CSE, National Institute of Technology Patna, 800005, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2024.06.05

Received: 25 Jan. 2023 / Revised: 20 Apr. 2023 / Accepted: 20 Aug. 2023 / Published: 8 Dec. 2024

Index Terms

Electroencephalogram, Deep Learning, CNN, Cognitive Dysfunction

Abstract

Neurophysiological parameters revealed by resting-state electroencephalography (rsEEG) may be helpful in the diagnosis of various brain diseases like Epilepsy, Alzheimer’s, depressive disorders, and many others. Due to the abrupt onset of seizures, Epilepsy is a chronic nerve illness that interferes with an epileptic patient's regular everyday activities. However, manual investigation of EEG for finding epileptiform discharges by skilled neurologists is a laborious, time-consuming, and error-prone process. It might cause a significant delay in providing clinical care to a person who could have epilepsy. This work offers a straightforward method for analyzing EEG data for the purpose of identifying epileptic features by iteratively simulating multiple deep learning models. It also attempts to include big data analytics for handling the challenge of analyzing the mountain of unstructured EEG data, available and accessible in numerous formats. In contrast to the state-of-the-art works, the performance scores of the proposed methods show significant improvement for the considered assessment parameters. Additionally, after testifying the performance of this proposed technique for relevant datasets, its application can be extended to identify other neurodegenerative disorders as well. Therefore, this study can assist physicians and healthcare professionals in the efficient care and treatment of patients with mental health issues.

Cite This Paper

Shipra Swati, Mukesh Kumar, "Analysis of Multichannel Neurophysiological Signal for Identifying Epileptic Cases Using Hybrid Deep-Nets", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.16, No.6, pp. 55-71, 2024. DOI:10.5815/ijigsp.2024.06.05

Reference

[1]I. Faiman, S. Smith, J. Hodsoll, A. H. Young and P. Shotbolt, "Resting-state EEG for the diagnosis of idiopathic epilepsy and psychogenic nonepileptic seizures: A systematic review", Epilepsy & Behavior, vol. 121, p. 108047, August 2021.
[2]C. E. Stafstrom, and L. Carmant, "Seizures and epilepsy: an overview for neuroscientists", Cold Spring Harbor perspectives in medicine, vol. 5(6), p. a022426, June 2015.
[3]A. A. Asadi-Pooya, E. Trinka, F. Brigo, C. Hingray, I. Karakis, S. Lattanzi, K. D. Valente, G. Contreras, S. T. Turuspekova, N. A. Kishk, G. Aljandeel, M. Farazdaghi, Y. C. Lopez, N. Kissani, C. Triki, G. Krämer, R. Surges, B. Mesraoua, H. Yu, A. Daza-Restrepo, T. Alsaadi, A. Al-Asmi, M. A. Kutlubaev, C. Pretorius, A. Jusupova, S. G. Khachatryan, L. N. Ranganathan, A. Ashkanani, T. Tomson and D. Gigineishvili, "Counseling about sudden unexpected death in epilepsy (SUDEP): a global survey of neurologists", Epilepsy & Behavior, vol. 128, p. 108570, March 2022.
[4]WHO. Epilepsy. http:/https:/www.who.int/news- room/fact- sheets/detail/epilepsy, 2022. Last accessed 2022-03-03.
[5]H. Najafzadeh, M. Esmaeili, S. Farhang, Y. Sarbaz, and S. H. Rasta, "Automatic classification of schizophrenia patients using resting-state EEG signals", Physical and Engineering Sciences in Medicine, vol. 44(3), pp. 855-870, September 2021.
[6]Y. Ding, Y. Chu, M. Liu, Z. Ling, S. Wang, X. Li, and Y. Li, "Fully automated discrimination of Alzheimer’s disease using resting-state electroencephalography signals", Quantitative Imaging in Medicine and Surgery, vol. 12(2), p. 1063, February 2022.
[7]S. Swati and M. Kumar, "Analysis of multichannel neurophysiological signal for detecting epilepsy using deep-nets", International Journal of Information Technology, vol. 15(3), pp. 1435-1441, March 2023.
[8]S. Lee, R. Hussein, R. Ward, Z. J. Wang, and M. J. McKeown, "A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson’s disease", Journal of neuroscience methods, vol. 361, p. 109282, September 2021.
[9]K. Rasheed, A. Qayyum, J. Qadir, S. Sivathamboo, P. Kwan, L. Kuhlmann, T. O’Brien and A. Razi, "Machine learning for predicting epileptic seizures using EEG signals: A review", IEEE Reviews in Biomedical Engineering, vol. 14, pp. 139-155, July 2020.
[10]A. Shoeibi, M. Khodatars, N. Ghassemi, M. Jafari, P. Moridian, R. Alizadehsani, M. Panahiazar, F. Khozeimeh, A. Zare, H. Hosseini-Nejad and A. Khosravi, "Epileptic seizures detection using deep learning techniques: A review", International Journal of Environmental Research and Public Health, vol. 18(11), p. 5780, May 2021.
[11]S. M. Usman, S. Khalid and Z. Bashir, "Epileptic seizure prediction using scalp electroencephalogram signals", Biocybernetics and Biomedical Engineering, vol. 41(1), pp. 211-220, January 2021.
[12]K. Singh and J. Malhotra, "Two-layer LSTM network-based prediction of epileptic seizures using EEG spectral features", Complex & Intelligent Systems, vol. 8(3), pp. 2405-2418, June 2022.'
[13]A. Babayan, M. Erbey, D. Kumral, J. D. Reinelt, A. M. Reiter, J. Röbbig, H. L. Schaare, M. Uhlig, A. Anwander, P. L. Bazin, and A. Horstmann, "A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults", Scientific data, vol. 6(1), pp. 1-21, February 2019.
[14]I. Obeid and J. Picone, "The temple university hospital EEG data corpus", Frontiers in neuroscience, vol. 10, p. 196, May 2016.
[15]S. Deivasigamani, C. Senthilpari and W. H. Yong, "Machine learning method based detection and diagnosis for epilepsy in EEG signal", Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 4215-4221, March 2021.
[16]M. Savadkoohi, T. Oladunni, and L. Thompson, "A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal", Biocybernetics and Biomedical Engineering, vol. 40(3), pp. 1328-1341, July 2020.
[17]Aayesha, M. B. Qureshi, M. Afzaal, M. S. Qureshi, and M. Fayaz, "Machine learning-based EEG signals classification model for epileptic seizure detection", Multimedia Tools and Applications, vol. 80, pp. 17849-17877, May 2021.
[18]M. S. Hossain, S. U. Amin, M. Alsulaiman and G. Muhammad, "Applying deep learning for epilepsy seizure detection and brain mapping visualization", ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 15(1), pp. 1-17, February 2019.
[19]N. Wagh and Y. Varatharajah, "Eeg-gcnn: Augmenting electroencephalogram-based neurological disease diagnosis using a domain-guided graph convolutional neural network", In Machine Learning for Health, Proceedings of Machine Learning Research (PMLR), pp. 367-378, November 2020.
[20]K. M. Tsiouris, V. C. Pezoulas, M. Zervakis, S. Konitsiotis, D. D. Koutsouris and D. I. Fotiadis, "A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals", Computers in biology and medicine, vol. 99, pp. 24-37, August 2018.
[21]R. Jana and I. Mukherjee, "Deep learning based efficient epileptic seizure prediction with EEG channel optimization", Biomedical Signal Processing and Control, vol. 68, p. 102767, July 2021.
[22]I. Omerhodzic, S. Avdakovic, A. Nuhanovic and K. Dizdarevic, "Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier", World Academy of Science, Engineering and Technology, Open Science Index 37, International Journal of Biomedical and Biological Engineering, vol. 4(1), pp. 35-40, 2010.
[23]A. de Cheveigné and I. Nelken, "Filters: when, why, and how (not) to use them", Neuron, vol. 102(2), pp. 280-93, April 2019.