A Novel Approach for Enhancing COVID-19 Diagnosis Accuracy through Graph Neural Networks Using Respiratory Sound Data

PDF (988KB), PP.47-61

Views: 0 Downloads: 0

Author(s)

Nagaraju Sonti 1,* Rukmini M. S. S. 2 Venkatesh Munagala 1

1. Department of ECE, Vasireddy Venkatadri Institute of Technology, Namburu, Pedakakani, Guntur, Andhra Pradesh

2. Department of ECE, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2025.02.03

Received: 31 Jan. 2024 / Revised: 20 Oct. 2024 / Accepted: 12 Jan. 2025 / Published: 8 Apr. 2025

Index Terms

Convolutional Neural Network, COVID-19, Graph Neural Networks, Fast Fourier Transform, Mel-Spectrogram

Abstract

This research presents a groundbreaking method using graph neural networks (GNN) for the accurate identification of COVID-19 through the analysis of respiratory sounds. The method utilizes advanced signal processing and machine learning techniques, including Fast Fourier Transforms (FFTs), Mel-spectrograms, and GNN methodology. FFTs are used as a preprocessing step to convert raw respiratory sound signals into frequency-domain representations, enhancing signal quality and isolating informative acoustic patterns. Mel-spectrograms are used to extract essential feature vectors for diagnostic classification, enhancing the model's ability to discern subtle patterns indicative of COVID-19 infection.
The GNN methodology feeds preprocessed audio features into a graph neural network architecture, which excels at capturing complex relationships and dependencies within data by modeling them as graphs. In this context, respiratory sound data is represented as a graph, with nodes corresponding to specific audio features and edges representing relationships between them. The GNN effectively learns to propagate information across the graph, enabling it to identify meaningful patterns indicative of COVID-19 infection. The research findings show that GNN surpasses convolutional neural network (CNN) in terms of accuracy, precision, recall, and F1 score, indicating significant progress in the application of GNN in medical diagnostics. The study provides a comprehensive examination of the possibilities of using advanced neural network techniques to transform disease detection and diagnosis, with a validation accuracy of up to 97% under rigorous constraints.

Cite This Paper

Nagaraju Sonti, Rukmini M. S. S., Venkatesh Munagala, "A Novel Approach for Enhancing COVID-19 Diagnosis Accuracy through Graph Neural Networks Using Respiratory Sound Data", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.17, No.2, pp. 47-61, 2025. DOI:10.5815/ijigsp.2025.02.03

Reference

[1]Cucinotta, D., & Vanelli, M. "WHO declares COVID-19 a pandemic." Acta Bio Medica: Atenei Parmensis 91, no. 1 (2020): 157. DOI: 10.23750/abm.v91i1.9397
[2]Jain, V. K., Iyengar, K., Vaish, A., & Vaishya, R. "Differential mortality in COVID-19 patients from India and western countries." Diabetes & Metabolic Syndrome: Clinical Research & Reviews 14, no. 5 (2020): 1037-1041. DOI: 10.1016/j.dsx.2020.06.031
[3]Lella, K. K., & Pja, A. "Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: cough, voice, and breath." Alexandria Engineering Journal 61, no. 2 (2022): 1319-1334. DOI: 10.1016/j.aej.2022.01.028
[4]Sarkar, M., Madabhavi, I., Niranjan, N., & Dogra, M. "Auscultation of the respiratory system." Annals of thoracic medicine 10, no. 3 (2015): 158. DOI: 10.4103/1817-1737.160840
[5]Leng, S., Tan, R. S., Chai, K. T. C., Wang, C., Ghista, D., & Zhong, L. "The electronic stethoscope." Biomedical engineering online 14, no. 1 (2015): 1-37. DOI: 10.1186/s12938-015-0038-4
[6]Shoeibi, Afshin, Marjane Khodatars, Roohallah Alizadehsani, Navid Ghassemi, Mahboobeh Jafari, Parisa Moridian, Ali Khadem et al. "Automated detection and forecasting of COVID-19 using deep learning techniques: A review." arXiv preprint arXiv:2007.10785 (2020).
[7]Asgharnezhad, Hamzeh, Afshar Shamsi, Roohallah Alizadehsani, Abbas Khosravi, Saeid Nahavandi, Zahra Alizadeh Sani, Dipti Srinivasan, and Sheikh Mohammed Shariful Islam. "Objective evaluation of deep uncertainty predictions for COVID-19 detection." Scientific Reports 12, no. 1 (2022): 1-11. DOI: 10.1038/s41598-021-04409-1
[8]Gozes, Ophir, and E. Siegel. "Rapid AI development cycle for coronavirus, pandemic: Initial results for automated detection & patient monitoring, using deep learning CT image analysis." arXiv preprint arXiv:2003.05037 (2020).
[9]Alizadehsani, Roohallah, Mohamad Roshanzamir, Sadiq Hussain, Abbas Khosravi, Afsaneh Koohestani, Mohammad Hossein Zangooei, Moloud Abdar et al. "Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020)." Annals of Operations Research (2021): 1-42. DOI: 10.1007/s10479-021-04142-0
[10]Sharifrazi, Danial, Roohallah Alizadehsani, Javad Hassannataj Joloudari, Shahab Shamshirband, Sadiq Hussain, Zahra Alizadeh Sani, Fereshteh Hasanzadeh, Afshin Shoaibi, Abdollah Dehzangi, and Hamid Alinejad-Rokny. "CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering." (2020).
[11]Shoeibi, Afshin, Navid Ghassemi, Roohallah Alizadehsani, Modjtaba Rouhani, Hossein Hosseini-Nejad, Abbas Khosravi, Maryam Panahiazar, and Saeid Nahavandi. "A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals." Expert Systems with Applications 163 (2021): 113788. DOI: 10.1016/j.eswa.2020.113788
[12]Khodatars, Marjane, Afshin Shoeibi, Delaram Sadeghi, Navid Ghaasemi, Mahboobeh Jafari, Parisa Moridian, Ali Khadem et al. "Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review." Computers in Biology and Medicine 139 (2021): 104949. DOI: 10.1016/j.compbiomed.2021.104949
[13]Shoeibi, Afshin, Marjane Khodatars, Navid Ghassemi, Mahboobeh Jafari, Parisa Moridian, Roohallah Alizadehsani, Maryam Panahiazar et al. "Epileptic seizures detection using deep learning techniques: a review." International Journal of Environmental Research and Public Health 18, no. 11 (2021): 5780. DOI: 10.3390/ijerph18115780
[14]Alizadehsani, Roohallah, M. Roshanzamir, Moloud Abdar, Adham Beykikhoshk, Abbas Khosravi, M. Panahiazar, Afsaneh Koohestani, F. Khozeimeh, Saeid Nahavandi, and N. Sarrafzadegan. "A database for using machine learning and data mining techniques for coronary artery disease diagnosis." Scientific data 6, no. 1 (2019): 1-13. DOI: 10.1038/s41597-019-0234-3
[15]Amin, S., Alharbi, A., Uddin, M.I. et al. "Adapting recurrent neural networks for classifying public discourse on COVID-19 symptoms in Twitter content." Soft Comput 26 (2022): 11077–11089. DOI: 10.1007/s00500-021-06298-x
[16]Amin, S., Alouffi, B., Uddin, M. I., & Alosaimi, W. "Optimizing Convolutional Neural Networks with Transfer Learning for Making Classification Report in COVID-19 Chest X-Rays Scans." Scientific Programming (2022). DOI: 10.1155/2022/6653764
[17]Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthanasombat, A., Spathis, D., Mascolo, C. "Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020). DOI: 10.1145/3394486.3412865
[18]Han, J., Qian, K., Song, M., Yang, Z., Ren, Z., Liu, S., ... & Schuller, B. W. "An early study on intelligent analysis of speech under COVID-19: Severity, sleep quality, fatigue, and anxiety." arXiv preprint arXiv:2005.00096 (2020).
[19]Imran, A., Posokhova, I., Qureshi, H. N., Masood, U., Riaz, M. S., Ali, K., ... & Nabeel, M. "AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app." Informatics in Medicine Unlocked 20 (2020): 100378. DOI: 10.1016/j.imu.2020.100378
[20]Alsabek, M. B., Shahin, I., & Hassan, A. "Studying the Similarity of COVID-19 Sounds based on Correlation Analysis of MFCC." 2020 international conference on communications, computing, cybersecurity, and informatics (CCCI) (2020). DOI: 10.1109/CCCI50837.2020.9355449
[21]Chaudhari, G., Jiang, X., Fakhry, A., Han, A., Xiao, J., Shen, S., & Khanzada, A. "Virufy: Global applicability of crowdsourced and clinical datasets for AI detection of COVID-19 from cough." arXiv preprint arXiv:2011.13320 (2020).
[22]Orlandic, L., Teijeiro, T., & Atienza, D. "The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms." Scientific Data 8, no. 1 (2021): 1-10. DOI: 10.1038/s41597-021-01076-6
[23]Al Ismail, M., Deshmukh, S., & Singh, R. "Detection of COVID-19 through the analysis of vocal fold oscillations." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2021): 1035-1039. DOI: 10.1109/ICASSP39728.2021.9413846
[24]Laguarta, J., Hueto, F., & Subirana, B. "COVID-19 artificial intelligence diagnosis using only cough recordings." IEEE Open Journal of Engineering in Medicine and Biology 1 (2020): 275-281. DOI: 10.1109/OJEMB.2020.3016884
[25]Wang, S. H., Govindaraj, V. V., Górriz, J. M., Zhang, X., & Zhang, Y. D. "Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network." Information Fusion 67 (2021): 208-229. DOI: 10.1016/j.inffus.2020.11.012
[26]Cohen, J. P., Dao, L., Roth, K., Morrison, P., Bengio, Y., Abbasi, A. F., ... & Duong, T. Q. "Predicting covid-19 pneumonia severity on chest x-ray with deep learning." Cureus 12, no. 7 (2020).
[27]Sedik, A., Hammad, M., El-Samie, A., Fathi, E., Gupta, B. B., El-Latif, A., & Ahmed, A. "Efficient deep learning approach for augmented detection of Coronavirus disease." Neural Computing and Applications 34, no. 14 (2022): 11423-11440. DOI: 10.1007/s00521-021-06111-2
[28]Haghanifar, A., Majdabadi, M. M., Choi, Y., Deivalakshmi, S., & Ko, S. "Covid-cxnet: Detecting covid-19 in frontal chest x-ray images using deep learning." Multimedia Tools and Applications (2022): 1-31. DOI: 10.1007/s11042-022-12778-1
[29]Gupta, V., Jain, N., Sachdeva, J., Gupta, M., Mohan, S., Bajuri, M. Y., & Ahmadian, A. "Improved COVID-19 detection with chest x-ray images using deep learning." Multimedia Tools and Applications 81, no. 26 (2022): 37657-37680. doi:10.1007/s11042-022-12612-8.
[30]Sitaula, C., & Shahi, T. B. "Monkeypox virus detection using pre-trained deep learning-based approaches." Journal of Medical Systems 46, no. 11 (2022): 1-9. doi:10.1007/s10916-022-01995-9.
[31]Bassiouni, M. M., Hegazy, I., Rizk, N., El-Dahshan, E. S. A., & Salem, A. M. "Automated Detection of COVID-19 Using Deep Learning Approaches with Paper-Based ECG Reports." Circuits, Systems, and Signal Processing, (2022): 1-43. doi:10.1007/s00034-022-01076-y.
[32]McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O. "librosa: Audio and music signal analysis in python." In Proceedings of the 14th python in science conference 8 (2015): 18-25. doi:10.25080/Majora-7b98e3ed-004.
[33]Zölzer, U. "Digital audio signal processing." John Wiley & Sons (2022).
[34]Theodoridis, S. "Machine Learning" (Second Edition, 2020).
[35]Brunton, S. L., & Kutz, J. N. "Data-driven science and engineering: Machine learning, dynamical systems, and control." Cambridge University Press (2022).
[36]Suhasini, S., Tatini, N.B., Arslan, F. et al. "Smart explainable artificial intelligence for sustainable secure healthcare application based on quantum optical neural network." Opt Quant Electron 55 (2023): 887. doi:10.1007/s11082-023-05155-3.