IJIGSP Vol. 4, No. 5, 8 Jun. 2012
Cover page and Table of Contents: PDF (size: 600KB)
Image segmentation, graph based method, boundary detection, graph partitioning algorithm, Image analysis
Image segmentation plays a crucial role in effective understanding of digital images. Past few decades saw hundreds of research contributions in this field. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. This paper critically reviews existing important graph based segmentation methods. The review is done based on the classification of various segmentation algorithms within the framework of graph based approaches. The major four categorizations we have employed for the purpose of review are: graph cut based methods, interactive methods, minimum spanning tree based methods and pyramid based methods. This review not only reveals the pros in each method and category but also explores its limitations. In addition, the review highlights the need for creating a database for benchmarking intensity based algorithms, and the need for further research in graph based segmentation for automated real time applications.
K. Santle Camilus,V. K. Govindan,"A Review on Graph Based Segmentation", IJIGSP, vol.4, no.5, pp.1-13, 2012. DOI: 10.5815/ijigsp.2012.05.01
[1]Noma, A., Graciano, A., Consularo, L., Cesar, M. R., & Bloch, I. (2008). A new algorithm for interactive structural image segmentation. arXiv:0805.1854v2 [cs.CV].
[2]Rocha, L.M., Cappabianco, F.A.M., & Falcao, A.X. (2009). Data clustering as an optimum-path forest problem with applications in image analysis. International Journal of Imaging Systems and Technology, 19(2), 50-68.
[3]Mortensen, E. (1998). Interactive segmentation with intelligent scissors. Graphical Models and Image Processing, 60 (5), 349-384.
[4]Falcao, A. X., Udupa, J. K., & Miyazawa, F. K. (2000). An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Transaction on Medical Imaging, 19 (1), 55-62.
[5]De Miranda, P. A. V., Falcão, A. X., & Udupa, J. K. (2010). Synergistic arc-weight estimation for interactive image segmentation using graphs. Computer Vision and Image Understanding, 114 (1), 85-99.
[6]Bai, X., & Sapiro G. (2007). Distance cut: interactive segmentation and matting of images and videos. IEEE International Conference on Image Processing, San Antonio, Texas, 2, pp. 249-252.
[7]Protiere, A., & Sapiro, G. (2007). Interactive image segmentation via adaptive weighted distances. IEEE Transactions on Image Processing, 16(4), 1046-1057.
[8]Boykov, Y. Y., & Jolly M. P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. Eighth IEEE International Conference on Computer Vision, 1, pp. 105-112.
[9]Talairach, J., & Tournoux P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Inc.
[10]Cootes, T., Taylor, C., Cooper, D., & Graham, J. (1995). Active shape models-their training and application. Computer Vision and Image Understanding, 61(1), 38-59.
[11]Grau, V., Mewes, A.U.J., Alcaniz, M., Kikinis, R., & Warfield, S.K. (2004). Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, 23(4), 447-458.
[12]Liu, J., & Udupa, J.K. 2009. Oriented active shape models. IEEE Transactions on Medical Imaging, 28(4), 571-584.
[13]Miranda, P.A.V., Falcao, A.X., & Udupa, J.K. (2009). Cloud bank: a multiple clouds model and its use in MR brain image segmentation. IEEE International Symposium on Biomedical Imaging, Boston, MA, pp. 506-509.
[14]Miranda, P.A.V., & Falcao, A.X. (2009). Links between image segmentation based on optimum-path forest and minimum cut in graph. Journal of Mathematical Imaging and Vision, 35(2), 128-142.
[15]Falcao, A. X., Udupa, J. K., Samarasekera, S., Sharma, S., Hirsch, B. E., & Lotufo R. de. A. (1998). User-steered image segmentation paradigms: live wire and live lane. Graphical Models and Image Processing, 60 (4), 233-260.
[16]Marfil, R., Molina-Tanco, L., Bandera, A., Rodriguez, J. A., & Sandoval F. (2006). Pyramid segmentation algorithms revisited. Pattern Recognition, 39 (8), 1430-1451.
[17]Eriksson, A. P., Olsson, C., & Kahl, F. (2007). Normalized cuts revisited: a reformulation for segmentation with linear grouping constraints. International Conference on Computer Vision, pp. 1-8.
[18]Grady, L. (2006). Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (11), 1768-1783.
[19]Goldberg, A. V., & Tarjan R. E. (1988). A new approach to the maximum-flow problem. Journal of the ACM, 35 (4), 921–940.
[20]Dinic, E. A. (1980). Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Mathematics- Doklady, 11, 1277-1280.
[21]Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (9), 1124-1137.
[22]Zeng, Y., Samaras, D., Chen W., & Peng, Q. (2008). Topology cuts: a novel min-cut/max-flow algorithm for topology preserving segmentation in n–d images. Computer Vision and Image Understanding, 112 (1), pp. 81-90.
[23]Falcao, A. X., Stolfi, J., & Alencar, De. (2004). The image foresting transform: theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (1), pp. 19-29.
[24]Felzenszwalb, P., & Huttenlocher, D. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59 (2), 167-181.
[25]Felzenszwalb, P.F., & Huttenlocher, D.P. (1998). Image segmentation using local variation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 98-104.
[26]Fahad, A., & Morris, T. (2006). A faster graph-based segmentation algorithm with statistical region merge. Lecture Notes in Computer Science, pp. 286-293.
[27]Zhang, M., & Alhajj, R. (2006). Improving the graph-based image segmentation method. Eighteenth IEEE International Conference on Tools with Artificial Intelligence, pp. 617 - 624.
[28]Saha, P.K., & Udupa, J.K. (2001). Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Computer Vision and Image Understanding, 82 (1), 42-56.
[29]Ciesielski, K.C., Udupa, J.K., Saha, P.K., & Zhuge Y. (2007). Iterative relative fuzzy connectedness for multiple objects with multiple seeds. Computer Vision and Image Understanding, 107(3), 160-182.
[30]Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transaction on Pattern Analysis and Machine Intelligence, 13(6), 583-598.
[31]Ciesielski, K.C., Udupa, J.K., Falcao, A.X., & Miranda, P.A.V. (2011). Fuzzy connectedness and graph cut image segmentation - similarities and differences. Proceedings of SPIE on Medical Imaging, To appear.
[32]Audigier, R., & Lotufo, R.A. (2007). Watershed by image foresting transform, tie-zone, and theoretical relationship with other watershed definitions. Eighth International Symposium on Mathematical Morphology and its Applications to Signal and Image Processing, Rio de Janeiro, Brazil, pp. 277-288.
[33]Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (8), 888-905.
[34]Greig, D.M., Porteous, B.T., & Seheult A.H. (1989). Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society Series B, 51, 271-279.
[35]Wu, Z., & Leahy, R. (2002). An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (11), 1101-1113.
[36]Shi, J., & Malik, J. (1997). Normalized cuts and image segmentation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 731-737.
[37]Sharon, E., Galun, M., Sharon, D., Basri, R., & Brandt, A. (2006). Hierarchy and adaptivity in segmenting visual scenes. Nature, 442 (7104), 810-813.
[38]Hochbaum, D. S. (2010). Polynomial time algorithms for ratio regions and a variant of normalized cut. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (5), 889-898.
[39]Yu, S. X., & Shi, J. (2004). Segmentation given partial grouping constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2), 173-183.
[40]Xu, L., Li, W., & Schuurmans, D. (2009). Fast normalized cut with linear constraints. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2866-2873.
[41]Sarkar, S., & Soundararajan, P. (2000). Supervised learning of large perceptual organization: graph
spectral partitioning and learning automata. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (5), 504-525.
[42]Ding, C. H. Q., He, X., Zha, H., Gu, M., & Simon, H. D. (2001). A min-max cut algorithm for graph partitioning and data clustering. International Conference on Data Mining, pp. 107-114.
[43]Li, X., & Tian, Z. (2007). Optimum cut-based clustering. Signal Processing, 87(11), 2491-2502.
[44]Wang, S., & Siskind, J. M. (2001). Image segmentation with minimum mean cut. Eighth IEEE International Conference on Computer Vision, 1, pp. 517-524.
[45]Wang, S., & Siskind, J. M. (2003). Image segmentation with ratio cut. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (6), 675-690.
[46]Jermyn, I., & Ishikawa, H. (2001). Globally optimal regions and boundaries as minimum ratio weight cycles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (10), 1075-1088.
[47]Boykov, Y., & Kolmogorov, V. (2003). Computing geodesics and minimal surfaces via graph cuts. Ninth IEEE International Conference on Computer Vision, 1, pp. 26-33.
[48]Grady, L., & Schwartz, E. L. (2006). Isoperimetric graph partitioning for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (3), 469-475.
[49]Lempitsky, V., Blake, A., & Rother, C. (2008) . Image segmentation by branch-and-mincut. European Conference on Computer Vision, pp. 15-29.
[50]Cousty, J., Bertrand, G., Najman, L., and Couprie, M. (2009). Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (8), 1362-1374.
[51]Cox, I. J., Rao, S. B., & Zhong, Y. (1996). Ratio regions: a technique for image segmentation. International Conference on Pattern Recognition, 2, pp. 557-564.
[52]Chen, C., Li, H., & Zhou, X. (2007). Automated segmentation of drosophila RNAi fluorescence cellular images using graph cuts. Lecture Notes in Computer Science, pp. 116-125.
[53]Yang, H., & Choe, Y. (2009). Cell tracking and segmentation in electron microscopy images using graph cuts, Sixth IEEE International Conference on Symposium on Biomedical Imaging, pp. 306-309.
[54]Zhilan, H., Guijin, W., Xinggang, L., & Hong, Y. (2009). Skin segmentation based on graph cuts. Tsinghua Science and Technology, 14 (4), 478-486.
[55]Hu, Z., Yan, H., & Lin, X. (2008). Clothing segmentation using foreground and background estimation based on the constrained delaunay triangulation. Pattern Recognition, 41 (5), 1581-1592.
[56]Han, D., Singh, V., Lee, J. E., Zakszewski, E., Adluru, N., Oakes, T. R., & Alexander, A. (2009). An experimental evaluation of diffusion tensor image segmentation using graph-cuts. Conference of the IEEE Engineering in Medicine and Biology Society, 5653-5656.
[57]Camilus, K. S., Govindan, V. K., & Sathidevi, P. S. (2010). Computer aided identification of the pectoral muscle in digitized mammograms. Journal of Digital Imaging, 23 (5), 562-580.
[58]Mohar, B. (1989). Isoperimetric numbers of graphs. Journal of Combinatorial Theory Series B, 47 (3), 274-291.
[59]Kolmogorov, V., & Zabin, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2), 147-159.
[60]Ishikawa, H., & Geiger, D. (1998). Segmentation by grouping junctions. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 125-131.
[61]Braquelaire, J. P., & Brun, L. (1998). Image segmentation with topological maps and inter-pixel representation. Journal of Visual Communication and Image Representation, 9(1), 62-79.
[62]Boykov, Y., & Funka-Lea, G. (2006). Graph cuts and efficient n-d image segmentation. International Journal of Computer Vision, 70 (2), 109-131.
[63]Freedman, D., & Zhang, T. (2005). Interactive graph cut based segmentation with shape priors, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, pp.755-762.
[64]Slabaugh, G., & Unal, G. (2005). Graph cuts segmentation using an elliptical shape prior, IEEE International Conference on Image Processing, 2, pp. 1222-1225.
[65]Zhang, J., Wang, Y., & Shi, X. (2009). An improved graph cut segmentation method for cervical lymph nodes on sonograms and its relationship with node's shape assessment. Computerized Medical Imaging and Graphics, 33, 602-607.
[66]Zhu-Jacquot, J., & Zabih, R. (2007). Graph cuts segmentation with statistical shape priors for medical images, Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp.631-635.
[67]Funka-Lea, G., Boykov, Y., Florin, C., Jolly, M. P., Moreau-gobard, R., Ramaraj, R., & Rinck, D. (2006). Automatic heart isolation for CT coronary visualization using graph-cuts. IEEE International Symposium on Biomedical Imaging, pp. 614-617.
[68]Das, P., & Veksler, O. (2006). Semiautomatic segmentation with compact shape prior. 3rd Canadian Conference on Computer and Robot Vision, pp. 28-36.
[69]Vicente, S., Kolmogorov, V., & Rother, C. (2008). Graph cut based image segmentation with connectivity priors. IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8.
[70]Veksler, O. (2008). Star shape prior for graph-cut image segmentation, 10th European Conference on Computer Vision, pp. 454-467.
[71]Liu, C., Li, F., Zhang, Y., & Gu, H. (2009). Interactive image segmentation based on hierarchical graph-cut optimization with generic shape prior. Lecture Notes in Computer Science, pp. 201-210.
[72]Kumar, M. P., Torr, P. H. S., & Zisserman, A. (2005). OBJ CUT. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, pp. 18-25.
[73]Lombaert, H., Sun, Y., Grady, L., and Xu, C. (2005). A multilevel banded graph cuts method for fast image segmentation, Tenth IEEE International Conference on Computer Vision, 1, pp. 259-265.
[74]Kohli, P., & Torr, P. H. S. (2007). Dynamic graph cuts for efficient inference in Markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (12), 2079-2088.
[75]Juan, O., & Boykov,Y. (2007). Capacity scaling for graph cuts in vision. IEEE 11th International Conference on Computer Vision, pp.1-8.
[76]Delong, A., & Boykov, Y. (2008). A scalable graph-cut algorithm for N-D grids. IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8.
[77]Schmidt, F. R., Toppe, E., & Cremers, D. (2009). Efficient planar graph cuts with applications in computer vision. IEEE Conference on Computer Vision and Pattern Recognition, pp. 351-356.
[78]Weldeselassie, Y. T., & Hamarneh, G. (2007). DT-MRI segmentation using graph cuts. Proceedings of SPIE, pp. 1-9.
[79]Malcolm, J., Rathi, Y., and Tannenbaum, A. 2007. A graph cut approach to image segmentation in tensor space, Proceedings of Workshop Component Analysis Methods, pp. 18-25.
[80]Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut: interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 23, 309-314.
[81]Xu, N., Bansal, R., & Ahuja, N. (2003). Object segmentation using graph cuts based active contours. Computer Vision and Pattern Recognition Conference, 2, 46-53.
[82]Xu, N., Ahuja, N., & Bansal, R. (2007). Object segmentation using graph cuts based active contours. Computer Vision and Image Understanding, 107 (3), 210-224.
[83]Yang, Q., Tang, X., Wang, C., Ye, Z., & Chen, M. (2007). Progressive cut: an image cutout algorithm that models user intentions. IEEE Multimedia, 14 (3), 56-66.
[84]Wang, C., Yang, Q., Chen, M., Tang, X., & Ye, Z. (2006). Progressive cut, Proceedings of the 14th Annual ACM international Conference on Multimedia, pp. 251-260.
[85]Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, C-20 (1), 68-86.
[86]Xu, Y., Olman, V., & Uberbacher, E. C. (1996). A segmentation algorithm for noisy images. IEEE International Joint Symposia on Intelligence and Systems, pp. 220-226.
[87]Xu, Y., & Uberbacher, E. C. (1997). 2D image segmentation using minimum spanning trees. Image and Vision Computing, 15 (1), pp. 47-57.
[88]Wertheimer, M. (1938). Laws of organization in perceptual forms- A source book of Gestalt psychology. London: Routledge & Kegan Paul.
[89]Chen, P.C., & Pavlidis, T. (1980). Image segmentation as an estimation problem, Computer Graphics and Image Processing, 12 (2), 153-172.
[90]Ping, Y., Runsheng, W., & Diannong, L. (1996). A new image segmentation approach based on linked pyramid. Proceedings of International Conference on Signal Processing, pp. 1118–1121.
[91]Burt, P., Hong, T., & Rosenfeld, A. (1981). Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Transaction on Systems, Man and Cybernetics, 11 (12), 802–809.
[92]Ziliani, F., & Jensen, B. (1998). Unsupervised image segmentation using the modified pyramidal linking approach. International Conference on Image Processing, 3, pp. 303-307.
[93]Bister, M., Cornelis, J., Rosenfeld, A. (1990). A critical view of pyramid segmentation algorithms. Pattern Recognition Letters, 11(9), 605- 617.
[94]Montanvert, A., Meer, P., & Rosenfeld, A. (1991). Hierarchical image analysis using irregular tessellations, IEEE Transaction on Pattern Analysis Machine Intelligence, 13(4), 307-316.
[95]Jolion, J. M., & Montanvert, A. (1992). The adaptive pyramid, a framework for 2D image analysis, Computer Vision, Graphics, and Image Processing, 55(3), 339-348.
[96]Huart, J., & Bertolino, P. (2005). Similarity-based and perception-based image segmentation. IEEE International Conference on Image Processing, pp. 1148-1151.
[97]Marfil, R., Rodriguez, J. A., Bandera, A., & Sandoval, F. (2004). Bounded irregular pyramid: a new structure for colour image segmentation. Pattern Recognition, 37 (3), 623-626.
[98]Brun, L., & Kropatsch, W. G. (2003). Construction of combinatorial pyramids. Lecture Notes in Computer Science, pp. 1-12.
[99]Montanari, U. (1971). On the optimal detection of curves in noisy pictures, Communications of ACM, 14(5), pp. 335-345.
[100]Martelli, A. (1972). Edge detection using heuristic search methods. Computer Graphics and Image Processing, 1(2), pp. 169-182.
[101]Martelli, A. (1976). An application of heuristic search methods to edge and contour detection, Communications of the ACM, 19(2), 73-83.
[102]Pope, D. L., Parker, D. L., Clayton, P. D., & Gustafson, D. E. (1985). Left ventricular border recognition using a dynamic search algorithm. Radiology, 155 (2), 513-518.
[103]Sonka, M., Winniford, M. D., & Collins, S. M. (1995). Robust simultaneous detection of coronary borders in complex images. IEEE Transactions on Medical Imaging, 14 (1), pp. 151-161.
[104]Udupa, J. K., Saha, P. K., & Lotufo, R. A. (2002). Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Transactions on Pattern Analysis Machine Intelligence, 24 (11), 1485-1500.
[105]Couprie, C., Grady, L., Najman, L., & Talbot, H. (2009). Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest. International Conference on Computer Vision, pp. 731-738.
[106]Gomez, D., Montero, J., Yáñez, J., & Poidomani, C. (2007). A graph coloring approach for image segmentation. Omega, 35 (2), 173-183.
[107]Corso, J. J., Yuille, A., Sicotte, N. L., & Toga, A. (2007). Detection and segmentation of pathological structures by the extended graph-shifts algorithm, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 985-993.
[108]Yuan, X., Situ, N., & Zouridakis, G. A. (2009). Narrow band graph partitioning method for skin lesion segmentation. Pattern Recognition, 42 (6), 1017-1028.
[109]Ta, V., Lézoray, O., Elmoataz, A., & Schüpp, S. (2009). Graph-based tools for microscopic cellular image segmentation. Pattern Recognition, 42 (6), 1113-1125.
[110]Zhang, Y. (1996) . A survey on evaluation methods for image segmentation. Pattern Recognition, 29 (8), 1335-1346.
[111]Unnikrishnan, R., Pantofaru, C., & Hebert, M. (2007) .Toward objective evaluation of image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (6), 929-944.
[112]Zhang, H., Fritts, J., & Goldman, S. (2008). Image segmentation evaluation: A survey of unsupervised methods, Computer Vision and Image Understanding, 110 (2), 260-280.
[113]Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. International Conference on Computer Vision, 2, pp. 416-423.
[114]Sanfeliu, A., Alquezar, R., Andrade, J., Climent, J., Serratosa, F. & Verges, J. (2002). Graph-based representations and techniques for image processing and image analysis. Pattern Recognition, 35 (3), 639-650.