Infrared and Microwave Image Fusion for Rainfall Detection over Northern Algeria

Full Text (PDF, 499KB), PP.11-18

Views: 0 Downloads: 0

Author(s)

Fethi Ouallouche 1,* Mourad Lazri 1 Soltane Ameur 1 Jean Michel Brucker 2 Mounir Sehad 2

1. LAMPA laboratory, University of Tizi Ouzou, Algeria

2. School EPMI, 13 Boulevard de l’Hautil, 95092 Cergy Pontoise Cedex, Paris, France

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2014.06.02

Received: 15 Jan. 2014 / Revised: 1 Mar. 2014 / Accepted: 10 Apr. 2014 / Published: 8 May 2014

Index Terms

Rainfall estimation, data fusion, MSG, TRMM, ANN

Abstract

Rain areas delineation proposed in this paper is based on the image fusion from geostationary Meteosat Second Generation (MSG) satellite, with the low-earth orbiting passive Tropical Rainfall Measuring Mission (TRMM) satellite. The fusion technique described in this work used an artificial neural network (ANN). It's has been developed to detect instantaneous rainfall by using information from the IR images of MSG satellite and from TRMM Microwave Imager (TMI). The study is carried out over north of Algeria. Seven spectral parameters are used as input data of ANN to identify raining or non - raining pixels. Corresponding data of raining /non-raining pixels are taken from a PR (precipitation radar) issued from TRMM. Results from the developed scheme are compared with the results of SI method (Scattering Index) taken as reference method. The results show that the developed model performs very well and overcomes the deficiencies of use a single satellite.

Cite This Paper

Fethi Ouallouche, Mourad Lazri, Soltane Ameur, Jean Michel Brucker, Mounir Sehad,"Infrared and Microwave Image Fusion for Rainfall Detection over Northern Algeria", IJIGSP, vol.6, no.6, pp.11-18, 2014. DOI: 10.5815/ijigsp.2014.06.02

Reference

[1]Lazri M., Ameur S., Brucker J. M., Testud J., Hamadache B., Hameg S., Ouallouche F. and Mohia Y. 2013: Identification of raining clouds using a method based on optical and microphysical cloud properties from Meteosat second generation daytime and nighttime data, Appl Water Sci, DOI 10.1007/s13201-013-0079-0.

[2]Arkin, P. A., Meisner, B. N., 1987. The relationship between largescale convective rainfall and cold cloud over the western hemisphere during 1982-84. Mon. Weather Review, 115, 51-74.

[3]Levizzani,V., 1999: Convective rain from a satellite perspective: Achievements and challenges. SAF Training Workshop- Nowcasting and Very Short Range Forecasting, Madrid, 9-11 Dec., EUMETSAT, EUM P 25, 75-84.

[4]Porcù, F., M. Borga, and F. Prodi, 1999: Rainfall estimation by combining radar and infrared satellite data for nowcasting purposes. Meteor. Appl., 6, 289-300.

[5]Amorati, R., Alberoni, P. P., Levizzani, V., Nanni, S., 2000. IR-based satellite and radar rainfall estimates of convective storms over northern Italy. Meteorol. Appl. 7, 1–18.

[6]Strangeways, I., 2007. Precipitation: theory, measurement and distribution,. Cambridge University Press. ISBN-13978-0-521-85117-6, 290 pp.

[7]Carleton, A.M., 1991, Satellite Remote Sensing in Climatology. London, Belhaven Press.

[8]Kuligowski, R., 2003, Satellite Rainfall Est, Vegetation, Snow, Soil Moisture Flood Inundation Other Applications, Remote Sensing in Hydrology.

[9]Saw, B. L., 2005. Infrared and passive microwave satelliterainfall estimate over tropics. Faculty of graduate school.

[10]Alemseged, Z., Njau, J., Mbua, E., 2009. Second conference of the East African Association for Paleoanthropology and Paleontology: fifty years after the discovery of Zinjanthropus. Evol Anthropol 18:235–236.

[11]Turk, F. J., Rohaly, G., Hawkins, J., Smith, E. A., Grose, A., Marzano, F.S., Mugnai, A., and Levizzani, V., 2000. Analysis and assimilation of rainfall from blended SSM/I, TRMM and geostationary satellite data. 10th AMS Conf. Sat. Meteor. and Ocean., 9-14 January, Long Beach, CA., 66-69.

[12]Todd, M. C., C. Kidd, D. Kniverton and T. J. Bellerby, 2001. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol., 18, 742-755.

[13]Porcù F., Prodi F., Dietrich S., Mugnai A. and Bechini R., 2000: Multisensor estimation of severe rainfall events, Proc. of the 2000 Eumetsat Meteorological Satellite Data Users' Conference. EUM P 29, Eumetsat, Darmstadt, 371-378.

[14]EUMETSAT, 2006. MSG CHANNELS Interpretation Guide: Weather, Surface conditions and Atmospheric constituents, http://oiswww.eumetsat.org.

[15]EUMETSAT, 2004. Applications of Meteosat Second Generation-conversion from counts to radiances and from radiances to brightness temperatures and reflectance. http://oiswww.eumetsat.org/WEBOPS/msg_interpretation/index.html.

[16]Kummerow, C. D. and Co-authors, 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl.Meteor., 39, 1965–1982.

[17]Smith, E.A., Hollis, T.D., 2003. Performance Evaluation of Level-2 TRMM Rain Profile Algorithms by Intercomparison and Hypothesis Testing. Meteorological Monographs 29: 207.

[18]Adler, R.F., Huffman, G.J., Chang, A., et al., 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4 (6): 1,147 -1,167.

[19]Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., Okamoto, K., 2000. Rain-Profiling Algorithm for the TRMM Precipitation Radar. J Appl Meteor 39(12): 2,038 - 2,052.

[20]Meneghini, R., Jones, J.A., Iguchi, T., Okamoto, K., Kwiatkowski, J., 2004. A Hybrid Surface Reference Technique and Its Application to the TRMM Precipitation Radar. J Atmos & Ocean Tech 21: 1,645-1,658.

[21]Feidas, H., Giannakos, A., 2011. Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation satellite data. Theor. Appl. Climatol. DOI 10.1007/s00704-011-0557-y.

[22]Thies, B., Nauss T., Bendix J., 2008. Delineation of raining from non-raining clouds during nighttime using Meteosat-8 data. Meteorol. Appl. 15, 219–230.

[23]Inoue, T., Wu, X., Bessho, K., 2001. Life cycle of convective activity in terms of cloud type observed by split window. 11th Conference on Satellite Meteorology and Oceanography, Madison, WI, USA.

[24]Lutz, H.J., Inoue, T., Schmetz, J., 2003. Notes and correspondence. Comparison of a split-window and a multi-spectral cloud classification for MODIS observations. J Meteor Soc Japan 81 (3), 623–631.

[25]Fritz, S., Laszlo, I., 1993. Detection of water vapor in the stratosphere over very high clouds in the tropics. J Geophys Res 98 (D12), 22959–22967.

[26]Schmetz, J., Tjemkes, S. A., Gube, M., Van de berg, L., 1997. Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res. 19, 433-441.

[27]trabala, K.I., Ackerman, S.A., Menzel, W.P., 1994. Cloud properties inferred from 8–12-μm data. J Appl Meteorol 33, 212–229.

[28]Soden, B. J., Bretherton, F. P., 1996. Interpretation of TOVS water vapour radiances in terms of layer-average relative humidities: Method and climatology for the upper middle, and lower troposphere. - Journal of Geophysical, Research-Atmospheres, 101: 9333–9343.

[29]Schmetz, J., Pili, P., Tjemkes, V., Just, D., Kerkmann, J., Rota, S., Ratier, A., 2002. An introduction to Meteosat Second Generation (MSG). Bulletin of the American Meteorological Society, 83: 977–992.

[30]Mugnai, A., Smith, E.A., and Tripoli, G.J., 1993. Foundations for statisticalphysical precipitation retrieval from passive microwave satellite measurements. Part- II: Emission-source and generalized weighting function properties of a time dependent cloud radiation model. J. Appl. Meteor., 32, 17-39.

[31]Spencer, R.W., Goodman, H.M., and Hood, R.E., 1989. Precipitation retrieval over land and ocean with the SSM/I : Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254-273.

[32]Ferraro, R.R., Smith, E.A., Berg, W., Huffman, G.J., 1998. A screening methodology for passive microwave precipitation retrieval algorithms. Journal of the Atmospheric Sciences 55, 1583-600.

[33]Neale, C.M.U., McFarland, M.J., Chang, K., 1998. Land-surface-type classification using microwave brightness temperatures from the special sensor microwave imager. IEEE Trans. Geosci. Remote Sensing 28, 829-38.

[34]Giannakos, A., Feidas, H., 2009. Detection of rainy clouds based on their spectral and textural features on Meteosat multispectral infrared data.

[35]Santosh Kumar Nanda, Debi Prasad Tripathy, Simanta Kumar Nayak, Subhasis Mohapatra,"Prediction of Rainfall in India using Artificial Neural Network (ANN) Models", IJISA, vol.5, no.12, pp.1-22, 2013. DOI: 10.5815/ijisa.2013.12.01.

[36]Mohammad Saber Iraji,Azam Tosinia,"Skin Color Segmentation in YCBCR Color Space with Adaptive Fuzzy Neural Network (Anfis)", IJIGSP, vol.4, no.4, pp.35-41,2012.

[37]Azimi-Sadjadi M. R. and R. Liou, "Fast learning process of multilayer neural networks using recursive least squares method," IEEE Trans. Signal Proc., vol. 40, pp. 446–450, Feb. 1992.

[38]Kr?se, B., and P. A. T. R. I. C. K. Van Der Smagt. "An Introduction to Neural Networks; 1996." Presso: http://citeseer. ist. psu. edu/ose96introduction. html.

[39]Wang J, Wolff D (2009) Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars. J Atmos Oceanic Technol 26(5):857–875.

[40]Grody, N.C., 1991. Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res.-Atmos. 96, 7423-35.