MultiBiometric Fusion: Left and Right Irises based Authentication Technique

Full Text (PDF, 1049KB), PP.10-21

Views: 0 Downloads: 0

Author(s)

Leila Zoubida 1,* Reda Adjoudj 1

1. EEDIS Laboratory, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, 22000, Algeria

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2017.04.02

Received: 22 Dec. 2016 / Revised: 26 Jan. 2017 / Accepted: 2 Mar. 2017 / Published: 8 Apr. 2017

Index Terms

Pattern Recognition, Multi-biometric System, Iris Authentication, Left Iris, Right Iris, Score-level Fusion, Support Vector Machines

Abstract

Biometric science is one of the important applications in the pattern recognition field. There are several modalities used in the biometric applications, among these different traits we choose the iris modality. Therefore, this paper proposes a multi-biometric technique which combines the both units of the iris modality: the left and the right irises. The fusion combines the advantages of the two instances. For the both units of the iris, the segmentation is realized by a modified method and the feature extraction is done by a global approach (the Daubechies wavelets). The Support Vector Machine SVM is used to obtain scores for fusion. Then the scores obtained are normalized by Min-Max method and the fusion is performed at score level by the combination of two methods: a combination method with a classification method. The Fusion is tested using four databases which are: CASIAV4 database, SDUMLA-HMT database, MMU1, and MMU2 databases. The obtained results have confirmed that the multi-biometric systems are better than the mono-modal systems according to their performance.

Cite This Paper

Leila Zoubida, Réda Adjoudj,"MultiBiometric Fusion: Left and Right Irises based Authentication Technique", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.9, No.4, pp.10-21, 2017. DOI: 10.5815/ijigsp.2017.04.02

Reference

[1]A. Ross and A.k. Jain, ”Multimodal Biometrics: An Overview”, proceedings of 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, pp. 1221–1224, Sep.2004

[2]A. Ross and A. Jain, “Information Fusion in Biometrics”, Pattern Recognition Letters, vol. 24, no. 13, pp. 2115–2125, 2003. Doi: 10.1016/S0167-8655(03)00079-5. 

[3]L. Hong, A. K. Jain, and S. Pankanti, ”Can Multibiometrics Improve Performance?”, Proc. AutoID’99, USA, pp. 59-64, Oct.1999. Doi: 10.1.1.460.7831. 

[4]A. Jain, A. Ross, and S. Prabhakar , “An Introduction to Biometric Recognition”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4-20, Jan.2004. Doi: 10.1109/TCSVT.2003.818349.

[5]A. Jain, K. Nandakumar, and A. Ross, “Score Normalization in Multimodal Biometric Systems”, Pattern Recognition, vol. 38, no. 12, pp. 2270-2285, Dec.2005. Doi: 10.1016/j.patcog.2005.01.012.

[6]A. Ross, K. Nandakumar, and A.K. Jain, “Handbook of Multibiometrics”, Springer, NewYork, USA, 1st edition, 2006. Doi: 10.1007/0-387-33123-9.

[7]A. Ross and N. Poh, “Multibiometric Systems: Overview, Case Studies, and Open Issues”, Springer 2009, pp. 273-292, 2009. Doi: 10.1007/978-1-84882-385-3_11

[8]C. Sanderson and K.K. Paliwal, “Information Fusion and Person Verification Using Speech and Face Information”, Research Paper IDIAP-RR, pp. 02-33, 2004. Doi: 10.1.1.7.9818.

[9]J.G Daugman, “High Confidence Visual Recognition of Persons by a Test of Statistical Independence”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1148-1161, Nov.1993. Doi: 10.1109/34.244676.

[10]J.G Daugman, “How Iris Recognition Works”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, Jan.2004. Doi: 10.1109/TCSVT.2003.818350.

[11]D. Gabor, “Theory of Communication”, Journal of the Institution of Electrical Engineers, vol. 93, no. 26, pp. 429-441, 1946.

[12]R.P. Wildes, ”Iris Recognition: An Emerging Biometric Technology”, Proceedings of the IEEE, vol. 85, no. 9, pp. 1348-1363, Sep.1997. Doi: 10.1109/5.628669.

[13]M. Libor, “Recognition of Human Iris Patterns for Biometric Identification”, University of Western Australia, 2003. Doi: 10.1.1.90.5112.

[14]K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima, “A Phase-Based Iris Recognition Algorithm”, International Conference on Biometrics, pp. 356–365, 2006. Doi: 10.1007/11608288_48.

[15]D.H. Kim and J.S. Ryoo, “Iris Identification System and Method of Identifying a Person through Iris Recognition”, Us Ptent 6247813, Jun.2001. Doi: 10.1109/KES.1997.619433.

[16]D.N. Bhat and S.K. Nayar, “Ordinal Measures for Image Correspondence”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 4, pp. 415-423, Apr.1998. Doi:10.1109/34677275.

[17]E. Krichen, Z. Sun, and A. Mellakh, “Technical Report of Iris Working Group on the 1st Biosecure Residential Workshop”. 

[18]W.W. Boles and B. Boashash, “A Human Identification Technique Using Images of the Iris and Wavelet Transform”, IEEE Transactions on Signal Processing, vol. 46, no. 4, pp. 1185-1188, Apr.1998. Doi: 10.1109/78.668573.

[19]R. Sanchez-Reillo, C. Sanchez-Avila, and A. Gonzalez-Marcos, “Improving Access Control Security Using Iris Identification”, Proceedings IEEE 34th Annual 2000 International Carnahan Conference on Security Technology, pp. 56-59, 2000. Doi: 10.1109/CCST.2000.891167.

[20]S. Lim, K. Lee, O. Byeon and T. Kim, “Efficient Iris Recognition through Improvement of Feature Vector and Classifier”, ETRI Journal, vol. 23, no. 2, pp. 61-70, Jun.2001. Doi: 10.1.1.116.7539.

[21]C.H. Daouk, L.A. El-Esber, F.D. Kammoun, and M.A. Al Alaoui, “Iris Recognition”, Proceeding of the IEEE ISSPIT, Marrakesh, pp. 558-562, 2002.

[22]L. Ma, Y. Wang, and T. Tan, "Iris Recognition Based on Multichannel Gabor Filtering", The 5th Asian Conference on Computer Vision ACCV’02, vol. 1, pp.279-283, Melbourne, Australia, Jan.2002. Doi: 10.1.1.132.3967.

[23]L. Ma, T. Tan, Y. Wang, and D. Zhang, “Personal Identification Based on Iris Texture Analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1519–1533,Dec.2003.Doi:10.1109/TPAMI.2003.1251145

[24]L. Ma, T. Tan, Y. Wang, and D. Zhang, “Efficient Iris Recognition by Characterizing Key Local Variations”, IEEE Transactions on Image Processing, vol. 13, no. 6, pp. 739–750, Jun.2004. Doi: 10.1109/TIP.2004.827237.

[25]S. Noh, K. Bae, K. Park, and J. Kim. “A New Iris Recognition Method Using Independent Component Analysis”, IEICE - Transactions on Information and Systems, vol. E88-D, no. 11, pp.2573–2581, Nov.2005. Doi: 10.1093/ietisy/e88-d.11.2573.

[26]C. Sanchez-Avila and R. Sanchez-Reillo, “Two Different Approaches for Iris Recognition Using Gabor Filters and Multiscale Zero-Crossing Representation”, Pattern Recognition, vol. 38, no. 2, pp. 231–240, Feb.2005. Doi:10.1016/S0031-3203(04)00297-3.

[27]C.H. Chen, C.T. Chu, “Low Complexity Iris Recognition Based on Wavelet Probabilistic Neural Networks”, Proceedings of International Joint Conference on Neural networks IJCNN’05, vol. 3, pp. 1930-1935, 2005. Doi: 10.1109/IJCNN.2005.1556175.

[28]W. Yuan and W. He, “A Novel Eyelash Detection Method for Iris Recognition”, Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, china, pp. 6536-6539, Sep.2005. Doi: 10.1109/IEMBS.2005.1615997.

[29]D. Schonberg and D. Kirovski, “EyeCerts”, IEEE Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 144-153, Jun.2006. Doi: 10.1109/TIFS.2006.873604.

[30]J. Daugman, “New Methods in Iris Recognition”, IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetic), vol. 37, no. 5, pp. 1167–1175, Oct.2007. Doi: 10.1109/TSMCB.2007.903540.

[31]D.M. Monro, S. Rakshit, and D. Zhang, “DCT-Based Iris Recognition”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 586–595, Apr.2007. Doi: 10.1109/TPAMI.2007.1002.

[32]A. Poursaberi and B.N. Araabi, “Iris Recognition for Partially Occluded Images: Methodology and Sensitivity Analysis”, EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1, Jan.2007. Doi: 10.1155/2007/36751. 

[33]M. Vatsa, R. Singh, and A. Noore, “Reducing the False Rejection Rate of Iris Recognition Using Textural and Topological Features”, International Journal of Signal Processing, vol. 2, no. 2, pp. 66–72, 2005. Doi: 10.1.1.307.3788.

[34]M. Vatsa, R. Singh, and A. Noore, ”Improving Iris Recognition Performance Using Segmentation, Quality Enhancement, Match Score Fusion, and Indexing” ,IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetic), vol. 38, no. 4, pp. 1021-1035, Aug.2008. Doi: 10.1109/TSMCB.2008.922059.

[35]A. Azizi and H.R. Pourreza, “Efficient Iris Recognition Through Improvement of Feature Extraction and Subset Selection”, International Journal of Computer Science and Information Security (IJCSIS), vol. 2, no. 1, Jun.2009. 

[36]L.F. Araghi, H. Shahhosseini, and F. Setoudeh , “Iris Recognition Using Neural Network”, Proceedings of the International Multi Conference of Engineers and Computer Scientists (IMECS2010), Hong Kong, vol. 1, pp. 338-340, Mar.2010.

[37]U. Gawande, M. Zaveri, and A. Kapur, “Improving Iris Recognition Accuracy by Score Based Fusion Method”, International Journal of Advancements in Technology, vol. 1, no. 1, Jul.2010. Doi: 978-1-4244-2328-6/08.

[38]A.W.K. Kong, D. Zhang, and M.S. Kamel, “An Analysis of Iris Code”, IEEE transactions on image processing, vol. 19, no. 2, pp. 522-532, 2010. Doi: 10.1109/TIP.2009.2033427.

[39]P. Strzelczyk, “Robust and Accurate Iris Segmentation Algorithm for Color and Noisy Eye Images”, Journal of telecommunication and information technology, pp. 5-9, 2010.

[40]H.B. Kekre, T.K. Sarode, V.A. Bharadi, A.A. Agrawal, R.J. Arora, and al., “Performance Comparison of DCT and VQ Based Techniques for Iris Recognition”, Journal of electronic science and technology, vol. 8, no. 3, pp. 223-229, Sep.2010. Doi: 10.3969/j.issn.1674-862X.2010.03.005.

[41]M.Y. Shams, M.Z. Rashad, O. Nomir, and R.M. El-Awady, “Iris Recognition Based on LBP and Combined LVQ Classifier”, International Journal of Computer Science and Information Technology (IJCSIT), vol. 3, no. 5, Oct.2011. Doi: 10.5121/ijcsit.2011.3506.

[42]R. Gupta and H. Saini, ”Generation of Iris Template for Recognition of Iris in Efficient Manner”, International Journal of Computer Science and Information Technologies (IJCSIT), vol. 2, no. 4, pp. 1753-1755,2011. Doi: 10.1.1.228.835.

[43]V.R.E. Chirchi, L.M. Waghmare, and E.R. Chirchi, “Iris Biometric Recognition for Person Identification in Security Systems”, International Journal of Computer Applications, vol. 24, no. 9, pp. 1-6, Jun.2011. Doi: 10.5120/2986-4002.

[44]P. Verma, M. Dubey, S. Basu, and P. Verma, ”Hough Transform Method for Iris Recognition- A Biometric Approach”, International Journal of Engineering and Innovative Technology (IJEIT) , vol. 1, no. 6, pp. 43-48, Jun.2012.

[45]C.C. Tsai, H.Y. Lin, J. Taur, and C.W. Tao, “Iris Recognition Using Possibilistic Fuzzy Matching on Local Features”, IEEE transactions on systems ,man, and cybernetics part B(cybernetics), vol. 42, no. 1, pp. 150-162,Feb.2012. Doi:10.1109/TSMCB.2011.2163817.

[46]M. Suganthy, P. Ramamoorthy, and R. Krishnamoorthy, “Effective Iris Recognition For Security Enhancement”, International Journal of Engineering Research and Applications (IJERA), vol. 2, no. 2, pp. 1016-1019, Mar.2012. Doi: 10.1.1.416.8936.

[47]Y. Si, J. Mei, and H. Gao, “Novel Approaches to Improve Robustness, Accuracy and Rapidity of Iris Recognition Systems”, IEEE transactions on industrial informatics, vol. 8, no. 1, pp. 110-117, Feb.2012. Doi: 10.1109/TII.2011.2166791.

[48]R.M. Costa and A. Gonzaga, “Dynamic Features for Iris Recognition”, IEEE transactions on systems, man, and cybernetics, part B(cybernetics), vol. 42, no. 4, pp. 1072-1082, Aug. 2012. Doi: 10.1109/TSMCB.2012.2186125.

[49]Y.H. Li and M. Savvides, “An Automatic Iris Occlusion Estimation Method Based on High-Dimensional Density Estimation”, IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 4, pp. 784-796, Apr.2013. Doi: 10.1109/TPAMI.2012.169

[50]E. Acar and M. S. Ozerdem, “An Iris Recognition System by Laws Texture Energy Measure Based k-NN Classifier”, 21st Signal Processing and Communications Applications Conference (SIU), pp. 1-4, 2013. Doi: 10.1109/SIU.2013.6531397.

[51]I. Mesecan, A. Eleyan, and B. Karlik, “Sift-based Iris Recognition Using Sub-Segments”, International Conference on Technological Advances in Electrical Electronics and Computer Engineering [TAEECE), pp. 350-353, 2013. Doi: 10.1109/TAEECE.2013.6557299

[52]D. Sanchez, P. Melin, O. Castillo, and F. Valdez, “Modular Granular Neural Networks Optimization with Multi-Objective Hierarchical Genetic Algorithm for Human Recognition Based on Iris Biometric”, IEEE Congress on Evolutionary Computation (CEC), pp. 772-778, 2013. Doi: 10.1109/CEC.2013.6557646.

[53]V. Saravanan and R. Sindhuja, “Iris Authentication through Gabor Filter Using DSP Processor”, Proceedings of IEEE Conference on Information and Communication Technologies (ICT), pp. 568-571, 2013. Doi: 10.1109/CICT.2013.6558159.

[54]V.K.N. Kumar and B. Srinivasan, “Performance of Personal Identification System Technique Using Iris Biometrics Technology”, International Journal of Image, Graphics and Signal Processing, vol. 5, no. 5, pp. 63-71, Apr.2013. Doi: 10.5815/ijigsp.2013.05.08.

[55]V.R.E. Chirchi and L.M. Waghmare, “Iris Biometric Authentication used for Security Systems”, International Journal of Image, Graphics and Signal Processing, vol. 6, no. 9, pp. 54-60, Aug.2014. Doi: 10.5815/ijigsp.2014.09.07.

[56]S. Homayon, “Iris Recognition for Personal Identification Using Lamstar Neural Network”, International Journal of Computer Science and Information Technology (IJCSIT), vol.7, no.1, pp.1-8, Feb.2015. Doi: 10.5121/ijcsit.2015.7101.

[57]Y. Li, “Iris Recognition Algorithm based on MMC-SPP”, International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 8, no. 2, pp. 1-10, Feb.2015. Doi: 10.14257/ijsip.2015.8.2.01.

[58]A.M. Patil, D.S. Patil, and P.S. Patil, “Iris Recognition using Gray Level Co-occurrence Matrix and Hausdorff Dimension”, International Journal of Computer Applications , vol. 133, no. 8, pp. 29-34, Jan.2016. Doi: 10.5120/ijca2016907953.

[59]Casia iris database: http://www.idealtest.org/findDownloadDbByMode.do?mode=Iris

[60]SDUMLA-HMT database: http://mla.sdu.edu.cn/sdumla-hmt.htm

[61]MMU database: http://www.mmu.edu.my/~ccteo/

[62]L. MA, T. Tan, Y. Wang, and D. Zhang, “Personal Identification Based on Iris Texture Analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1519-1533, Dec.2003. Doi:10.1109/TPAMI.2003.1251145

[63]H. Proenca and L.A Alexandre, “Toward non Cooperative Iris Recognition: A Classification Approach Using Multiple Signatures”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 607-612, Apr.2007. Doi: 10.1109/TPAMI.2007.1016. 

[64]Z. He, T. Tan, Z. Sun, and X. Qiu, “Toward Accurate and Fast Iris Segmentation for Iris Biometrics”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1670-1684, Sep.2009. Doi: 10.1109/TPAMI.2008.183.

[65]X. Liu, K.W. Bowyer, and P.J. Flynn, ”Experiments with An Improved Iris Segmentation Algorithm”, 4th IEEE Workshop on Automatic Identification Advanced Technologies (AutoID), pp. 118-123, New York, Oct.2005. Doi: 10.1109/AUTOID.2005.21.

[66]X. Liu, K.W. Bowyer, and P.J. Flynn, “Experimental Evaluation of Iris Recognition”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.158-165, Jun.2005. Doi: 10.1109/CVPR.2005.576.

[67]S.A.C. Schuckers, N.A. Schmid, A. Abhyankar, V. Dorairaj, C.K. Boyce, and al., “On Techniques for Angle Compensation in Nonideal Iris Recognition”, IEEE Transactions on Systems Man and Cybernetics-Part B(Cybernetics), vol. 37, no. 5, pp. 1176-1190, Oct.2007. Doi: 10.1109/TSMCB.2007.904831.

[68]A. Ross and S. Shah, “Segmenting Non-Ideal Irises Using Geodesic Active Contours”, Proceedings of biometrics symposium (BSYM): Special Session on Research at the Biometric Consortium Conference, Baltimore, USA, pp. 1-6, 2006. Doi: 10.1109/BCC.2006.4341625.

[69]N. Sudha, N.B. Puhan, H .Xia, and X. Jiang, “Iris Recognition on Edge Maps”, IET Computer vision, vol. 3, no. 1, pp. 1-7, Mar.2009. Doi: 10.1049/iet-cvi:20080015.

[70]N.B. Puhan, N. Sudha, and S.A. Kaushalram, ”Efficient Segmentation Technique for Noisy Frontal View Iris Images Using Fourier Spectral Density”, Signal Image and Video Processing, vol. 5, no. 1, pp. 105-119, Nov.2009. Doi: 10.1007/s11760-009-0146-z.

[71]L. Ma., Y. Wang, and T. Tan, “Iris Recognition Using Circular Symmetric Filters”, 16th international conference on Pattern Recognition (ICRP 2002), vol. 2 , pp. 414-417, Aug.2002. Doi: 10.1109/ICPR.2002.1048327.

[72]N. Khiari, H. Mahersia, and K. Hamrouni, “Iris Recognition Using Steerable Pyramids”, First Workshops on Image Processing Theory Tools and Applications IPTA 2008, pp. 1-7, Sousse, Tunisia, Dec.2008. Doi: 10.1109/IPTA.2008.4743737.

[73]R.P. Wildes, J.C. Asmuth, G.L. Green, S.C. Hsu, R.J. Kolczynski, and al., “A System for Automated Iris Recognition”, Proceedings of the second IEEE Workshop on Applications of Computer Vision, Sarasota, pp. 121-128, Dec.1994. Doi: 10.1109/ACV.1994.341298.

[74]W.K. Kong and D. Zhang, “Accurate Iris Segmentation Based on Novel Reflection and Eyelash Detection Model”, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, pp. 263-266, 2001. Doi: 10.1109/ISIMP.2001.925384.

[75]Y. Zhu, T. Tan, and Y. Wang, “Biometric Personal Identification Based on Iris Patterns”, Proceedings of 15th International Conference on Pattern Recognition ICPR, Barcelona, Espagne, vol. 2, pp. 805-808, 2000. Doi: 10.1.1.85.5512.

[76]J.G. Daugman, “High Confidence Recognition of Persons by Rapid Video Analysis of Iris Texture”, European Convention on Security and Detection, pp. 244–251, May.1995. Doi: 10.1049/cp:19950506.

[77]A. Chikhaoui and A. Mokhtari, “Classification with Support Vector Machine: New Quadratic Programming Algorithm”, COSI’2013, Algeria, Jun.2013. 

[78]V. Vapnik, “Statistical Learning Theory”, John Wiley and Sons, New York, 1998. 

[79]V. Vapnik, “The Nature of Statistical Learning Theory”, Springer-Verlag, New York, 1995. Doi: 10.1007/978-1-4757-2440-0.

[80]S. Ben Yacoub, “Multi-Modal Data Fusion for Person Authentication Using SVM”, IDIAP Research Report, 1998. Doi: 10.1.1.49.8458.

[81]R.M. Bolle, J. Connell, and S. Pankanti, N.K. Ratha, and A.W. Senior, “Guide to Biometrics”, Springer-Verlag, New York, 2004. Doi: 10.1007/978-1-4757-4036-3.

[82]J. Kittler, M. Hatef, R. Duin, and J. Matas “On Combining Classifiers”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-239,1998. Doi: 10.1109/34.667881.

[83]A. Chikhaoui, B. Djebbar, and R. Mekki, “New Method for Finding an Optimal Solution to Quadratic Programming Problems”, Journal of Applied Sciences, vol. 10, no. 15, pp. 1627-1631, 2010. Doi: 10.3923/jas.2010.1627.1631.