International Journal of Image, Graphics and Signal Processing (IJIGSP)

IJIGSP Vol. 15, No. 4, Aug. 2023

Cover page and Table of Contents: PDF (size: 671KB)

Table Of Contents

REGULAR PAPERS

Object tracking via a Novel Parametric Decisions based RGB-Thermal Fusion

By Satbir Singh Arun Khosla Rajiv Kapoor

DOI: https://doi.org/10.5815/ijigsp.2023.04.01, Pub. Date: 8 Aug. 2023

The thermo- visual fusion based tracking has been deployed for overcoming the shortcomings of alone vision-based object tracking. The assistance from both domains should be wisely merged so that it should result in a useful practice for object tracking. Several techniques had been developed recently to implement a brilliant fusion, but this undeveloped field still inhibits many unsolved challenges. The proposed method aims at increasing the effectiveness of tracking by bi-modal fusion with the introduction of a new set of rules based upon the parameters generated from the decision of individual modality trackers. This practice helps to achieve output by only a single run of the fusion process in every frame. The method also proposes to use minimal information from individual trackers in normal conditions and incorporates the use of supplementary information from imageries merely in case of diverse working conditions. This procedure, in turn, lessens the computations and hence reduces time to process. The experiments performed on well-known publically available datasets show the advantages of the proposed method over the individual visual domain tracking and other existing states of the art fusion techniques.

[...] Read more.
Radio Spectrum Measurement Modeling and Prediction based on Adaptive Hybrid Model for Optimal Network Planning

By Seyi E. Olukanni Joseph Isabona Ituabhor Odesanya

DOI: https://doi.org/10.5815/ijigsp.2023.04.02, Pub. Date: 8 Aug. 2023

Path loss model is fundamental to effective network planning. It provides adequate information on the extent of signal loss and help to improve the quality of service of cellular communication in an area. In this paper we used a hybrid wavelet and improved log-distance model for modeling and prediction of propagation path loss in an irregular terrain. The prediction accuracy of the proposed model was quantified using five statistical metrics. As seen presented in Table 2 and Table 3, the proposed model outperformed the standard log-distance model, the COST234 Hata and Okumura Hata models by an average of 20%. 

[...] Read more.
An Experimental and Statistical Analysis to Assess impact of Regional Accent on Distress Non-linguistic Scream of Young Women

By Disha Handa Renu Vig Mukesh Kumar Namarta Vij

DOI: https://doi.org/10.5815/ijigsp.2023.04.03, Pub. Date: 8 Aug. 2023

Scream is recognized as constant and ear-splitting non-linguistic verbal communication that has no phonological structure. This research is based on the study to assess the effect of regional accent on distress screams of women of a very specific age group. The primary goal of this research is to identify the components of non-speech sound so that the region of origin of the speaker can be determined. Furthermore, this research can aid in the development of security techniques based on emotions to prevent and report criminal activities where victims used to yell for help. For the time being, we have limited the study to women because women are the primary victims of all types of criminal’s activities. The Non-Speech corpus has been used to explore different parameters of scream samples collected from three different regions by using high-reliability audio recordings. The detailed investigation is based on the vocal characteristics of female speakers. Further, the investigations have been verified with bi-variate, partial correlation and one-way ANOVA to find out the impact of region-based accent non-speech distress signal. Results from the correlation techniques indicate that out of four attributes only jitter varies with respect to the specific region. Whereas ANOVA depicts that there is no significant regional impact on distress non-speech signals.

[...] Read more.
Mammogram Pre-processing Using filtering methods for Breast Cancer Diagnosis

By Shah Hemali Agrawal Smita Parita Oza Sudeep Tanwar Ahmed Alkhayyat

DOI: https://doi.org/10.5815/ijigsp.2023.04.04, Pub. Date: 8 Aug. 2023

Cancer is the second most found disease, and Breast cancer is the most common in women. Breast cancer is curable and can reduce mortality, but it needs to be identified early and treated accordingly. Radiologists use different modalities for the identification of Breast cancer. The superiority of Mammograms over other modalities is like minor radiation exposure and can identify different types of cancers. Therefore, mammograms are the most frequently used imaging modality for Breast Cancer Diagnosis. However, noise can be added while capturing the image, affecting the accuracy and analysis of the result. Therefore, using different filtering techniques to pre-process mammograms can enhance images and improve outcomes. For the study, the MIAS dataset has been used. This paper gives a comparative study on filters for Denoising and enhancement of mammograms. The study focuses on filters like Box Filter, Averaging filter, Gaussian Filter, Identical Filter, Convolutional 2D Filter, Median Filter, and Bilateral Filter. Performance measures used to compare these filters are Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM), and Peak Signal-to-noise Ratio (PSNR). All Performance measures are evaluated for all images of MIAS dataset and compared accordingly. Results show that Gaussian Filter, Median Filter, and Bilateral Filter give better results than other filters.

[...] Read more.
Deep-ShrimpNet fostered Lung Cancer Classification from CT Images

By V. Deepa Mohamed Fathimal. P

DOI: https://doi.org/10.5815/ijigsp.2023.04.05, Pub. Date: 8 Aug. 2023

Lung cancer affects the majority of people, due to genetic changes in lung tissues. Several existing methods on lung cancer detection are utilized with machine learning, but it does not accurately classify the lung cancer and also it takes high computation time. To overwhelm these issues, Deep-ShrimpNet fostered Lung cancer classification from CT images (LCC-Deep-ShrimpNet) is proposed. Initially, the input lung CT images are taken from IQ-OTH/NCCD Lung Cancer Dataset. Then the input lung CT images are pre-processed using Kernel co-relation method. Then these pre-processed lung CT images are given to Bayesian fuzzy clustering for extracting lung nodule region. Then the extracted lung nodule region is given into Deep-ShrimpNet classifier for representing features and classifying the lung CT images as normal (Healthy), Benign, and Malignant. The proposed LCC-Deep-ShrimpNet method is activated in python. The performance of the proposed LCC-Deep-ShrimpNet method attains 26.26%, 16.9%, 12.67%, 21.52% and 24.05% high accuracy, 68.86%, 59.57%, 57%, 62.72% and 65.69% low error rate and 60.76%, 53.67%, 68.58%, 59% and 56.61% low computation time compared with the existing methods.

[...] Read more.
Variable Synergic Squeeze Convoluted Equilibrium Network Enabled Crowd Management in IoT

By Jyoti A. Kendule Kailash J. Karande

DOI: https://doi.org/10.5815/ijigsp.2023.04.06, Pub. Date: 8 Aug. 2023

In IoT, Crowd counting is a difficult task, because of any sudden incidents people unites in a particular place. To count them effectively a crowd counting mechanism is needed. The crowd counting is help for public security. Several methods are proposed for crowd counting, but the existing methods does not provide high accuracy and high error rate. To overcome these drawbacks a Variable Synergic Squeeze Convoluted Equilibrium Network Enabled Crowd Management in IoT (VS2CEN-CC-IOT) is proposed in this manuscript for crowd counting and crowd density detection. Initially, the images are taken from two datasets named ShanghaiTech and Venice dataset. Then the images are preprocessed using Gaussian filter based preprocessing. After preprocessing the discrete wavelet transform (DWT) is used for extracting the features. The extracted features are then given to Synergic Squeeze Convoluted Equilibrium Network (SSCEN) for detecting crowd count and crowd density. In this work, variable Equilibrium Optimization Algorithm (EOA) is applied to optimize the weight parameter of SSCEN. The simulation procedure is performed in PYTHON platform. The VS^2CEN-CC-IOT attains 0.8%, 1.3%, 1.5% higher accuracy, 13%, 3.3%, 8.2% higher Precision, 12%, 10%, 17% higher specificity , 8.2%, 3.3%, 6.9% higher F1-score and 0.12%, 0.06%, 0.07% lower mean absolute error (MAE), 0.2%, 0.25%, 0.1% lower root mean square error than the existing optimization approaches such as Arithmetic Optimization Algorithm(ADA), Chaos Game Optimization(CGO) and Gradient Based Optimizer(GBO) respectively.

[...] Read more.
Building a Medium Scale Dataset for Non-destructive Disease Classification in Mango Fruits Using Machine Learning and Deep Learning Models

By Vani Ashok Bharathi R K Palaiahnakote Shivakumara

DOI: https://doi.org/10.5815/ijigsp.2023.04.07, Pub. Date: 8 Aug. 2023

The growing quality and safety concern about fresh agricultural produce among consumers have led to the development of non-destructive quality assessment and testing techniques of fruits and vegetables. Humans judge the quality of fruits based on sensory attributes like taste, aroma etc. The shape, size, color, presence of defects which are external to fruits also influence the degree of consumer acceptability of produce. The traditional time consuming, manual fruit quality inspection is replaced by automated, fast, consistent, non-destructive techniques using computer vision in combination with learning algorithms. But the lack of benchmark datasets for agricultural produce has made an objective comparison of the proposed methods difficult. Hence, the proposed work aims to build a medium scale dataset for mango fruits of “Alphonso” cultivar with three classes: chilling injury, defective and non-defective. The reliability of the proposed dataset consisting of 2279 color images of mango fruits with 736 samples in chilling injury class, 632 samples in defective class and 911 samples in non-defective class, was established using a novel approach of developing a predictive model based on discriminant function analysis (DFA) which assigns group membership to each sample of the dataset. Extensive benchmarking analysis is established on the validated dataset using statistical and deep learning algorithms like support vector machine (SVM) and convolutional neural network (CNN), respectively. SVM achieved significant disease classification accuracy of 95% and 91.52% accuracy was achieved by custom CNN. The results of the proposed work indicate that the proposed color image dataset of mango fruits can be used as a benchmark dataset by other researchers for objective comparison in quality evaluation of mango fruits.

[...] Read more.