International Journal of Intelligent Systems and Applications(IJISA)

ISSN: 2074-904X (Print), ISSN: 2074-9058 (Online)

Published By: MECS Press

IJISA Vol.11, No.1, Jan. 2019

Non-Linear Model of the Damping Process in a System with a two-mass Pendulum Absorber

Full Text (PDF, 329KB), PP.67-72

Views:113   Downloads:2


Zhengbing Hu, Viktor Legeza, Ivan Dychka, Mykola Onai

Index Terms

Damping System in the Non-Linear Formulation;Two-Mass Pendulum Absorber;Amplitude-Frequency Characteristic (AFC);Parameters of Tuning of Absorber;Determining the Optimum Parameters


In this paper, the dynamic behavior of the damping system is analyzed with a two-mass pendulum absorber, the equations of motion of non-linear mechanical systems are built accordingly. AFC equation systems have been identified in the non-linear formulation. To obtain the frequency response, the Ritz averaging method is used. A new numerical method of determining the parameters of optimal tuning two-mass pendulum absorber in the non-linear formulation has been Proposed and implemented.

Cite This Paper

Zhengbing Hu, Viktor Legeza, Ivan Dychka, Mykola Onai, "Non-Linear Model of the Damping Process in a System with a two-mass Pendulum Absorber", International Journal of Intelligent Systems and Applications(IJISA), Vol.11, No.1, pp.67-72, 2019. DOI: 10.5815/ijisa.2019.01.07


[1]Zhengbing Hu, V.P.Legeza, I.A.Dychka, D.V. Legeza, "Mathematical Modeling of the Process of Vibration Protection in a System with two-mass Damper Pendulum", International Journal of Intelligent Systems and Applications (IJISA), Vol.9, No.3, p.p.18 – 25, 2017. DOI: 10.5815/ijisa. 2017.03.03. 

[2]Legeza V.P.Vibration protection of dynamic systems with roller absorbers (in Ukrainian). Kyiv, “Fourth wave”, 2010. – 280 p.  

[3]Legeza V.P. The theory of vibration protection systems using isochronous roller dampers (models, methods, dynamic analysis, technical solutions) (in Russian). – Saarbrücken (Deutschland): LAMBERT Academic Publishing, 2013. – 116 p.

[4]Ritz W.   eine neue Methode zur   gewisser Variations – Probleme der mathemati-schen Physik. – Journal   die reine und angewandte Mathematik (Grelle), 1909, B. 135, N.1, S. 1 – 61.

[5]Klotter K. Non-linear vibration problems treated by the averaging method of W.Ritz //Proc. 1st U.S. Nath. Congr., Appl. Mech., Chicago, Illinois: Edwards Brothers Inc., 1951, p.p. 125 – 131.

[6]Weaver W.,Timoshenko S.P.,Young D.H. Vibration Problems in Engineering, 5th Ed. – J. Wiley, 1990. – 624 p. 

[7]Den Hartog J.P. Mechanical Vibrations. McGraw-   Hill, New York, 1956. – 436 p. 

[8]Korenev B.G., Reznikov L.M. Dynamic Vibration Absorbers – Theory and Technical Applications. Chichester. –John Willey and Sons. –1993. – 296 p. 

[9]State building norms of Ukraine. Loads and effects (SBN В.1.2-2:2006). Kyiv, Ministry of Construction of Ukraine. – 2006. – 78 p. 

[10]Dynamic calculation of structures for special effects: Handbook of the designer (Ed. Korenev B.G, Rabinovich I.M). (in Russian). – M .: Stroiizdat, 1981. – 216 p.

[11]Fisher O. Some experience with the use of vibration absorbers on aerial masts. – Acta Technica CSAV. – 1974, Roc. 19. – №2. – S. 32 – 38.

[12]Kolousek V, et al. Wind effect on Civil Engineering    Structures. – Academia Praha. – 1983. – 125 p.

[13]Da-Xue Chen,Guang-Hui Liu,"Oscillatory Behavior of a Class of Second-order Nonlinear Dynamic Equations on Time Scales", IJEM, vol.1, no.6, pp.72-79, 2011.

[14]Mehdi Rouissat,Riad .A Borsali,Mohammed Chick-Bled,"Dual Amplitude-Width PPM for Free Space Optical Systems", IJITCS, vol.4, no.3, pp.45-50, 2012.