IJITCS Vol. 15, No. 3, Jun. 2023
Cover page and Table of Contents: PDF (size: 133KB)
REGULAR PAPERS
The negative impact of out-of-school students' problems at the basic and high-school levels is always very weighty on the affected individuals, parents, and society at large. Owing to the weighty negative consequences, policymakers, different government agencies, educators and researchers have long been looking for how to effectively study and forecast the trends as a means of offering a concrete solution to the problem. This paper develops a better hybrid machine learning method, which combines the least square and support vector machine (LS-SVM) model for robust prediction improvement of out-of-school children trend patterns. Particularly, while other previous works only engaged some regional and few samples of out-of-school datasets, this paper focused on long-ranged global out-of-school datasets, collated by UNESCO between 1975- 2020. The proposed hybrid method exhibits the optimal precision accuracies with the LS-SVM model in comparison with ones made using the ordinary SVM model. The precision performance of both LS-SVM and SVM was quantified and a lower NRMSE value is preferred. From the results, the LS-SVM attained lower error values of 0.0164, 0.0221, 0.0268, 0.0209, 0.0158, 0.0201, 0.0147 and 0.0095 0.0188, compared to the SVM model that attained higher NRMSE values of 0.041, ,0.0628, 0.0381, 0.0490, 0.0501, 0.0493, 0.0514, 0.0617 and 0.0646, respectively. By engaging the MAPE indicator, which expresses the mean disconnection between the sourced and predicted values of the out-of-school data. By means of the MAPE, LS-SVM attained lower error values of 0.51, 1.88, 0.82, 2.38, 0.62, 2.55, 0.60, 0.60, 1.63 while SVM attained 1.83, 7.39, 1.79 7.01, 2.43, 8.79, 2.58, 4.13, 6.18. This implies that the LS-SVM model has better precision performance than the SVM model. The results attained in this work can serve as an excellent guide on how to explore hybrid machine-learning techniques to effectively study and predict out-of-school students among researchers and educators.
[...] Read more.In recent days, the smart city project has been emerging concept all over the world. In this process, the proper communication between the sensors and the smart devices, and identification of optimal path between sensors and mutation sensors in large geographical area is very difficult. The main objective has been considered to overcome the drawbacks as mentioned above. The proposed algorithm is efficient to provide integrated communication of IoT-based ubiquitous networking (UBN) devices to improve in large geographically distributed area. The data storage capacity and accuracy of sensors and smart devices are enhanced using the proposed algorithm. The communication latency and data pre-processing of IoT-based UBN nodes deployed in smart cities are reduced. The proposed algorithm also analyses the performance of IoT-based UBN nodes by considering geographical testbeds that represent a smart city scenario. The analysis and comparison are carried out by considering the heuristic parameters. The proposed algorithm will also optimize the communication latency and data pre-processing time by analyzing various sensitivity levels by considering the heuristic parameters in different probability of nodes in smart cities. The proposed IoT-based UBN computing devices improve the objective function due to proper integrated communication between the sensors using a machine learning based regression algorithm. The proposed algorithm also identifies the probability sensitivity of optimal path between smart devices in a smart city thereby enhancing the connectivity of mutated sensor nodes. The proposed algorithm also enhances the probability of smart device connectivity to improve the accuracy, flexibility and large geographical coverage using machine learning based regression algorithm.
[...] Read more.Web applications are becoming very important in our lives as many sensitive processes depend on them. Therefore, it is critical for safety and invulnerability against malicious attacks. Most studies focus on ways to detect these attacks individually. In this study, we develop a new vulnerability system to detect and prevent vulnerabilities in web applications. It has multiple functions to deal with some recurring vulnerabilities. The proposed system provided the detection and prevention of four types of vulnerabilities, including SQL injection, cross-site scripting attacks, remote code execution, and fingerprinting of backend technologies. We investigated the way worked for every type of vulnerability; then the process of detecting each type of vulnerability; finally, we provided prevention for each type of vulnerability. Which achieved three goals: reduce testing costs, increase efficiency, and safety. The proposed system has been validated through a practical application on a website, and experimental results demonstrate its effectiveness in detecting and preventing security threats. Our study contributes to the field of security by presenting an innovative approach to addressing security concerns, and our results highlight the importance of implementing advanced detection and prevention methods to protect against potential cyberattacks. The significance and research value of this survey lies in its potential to enhance the security of online systems and reduce the risk of data breaches.
[...] Read more.Universities across the globe have increasingly adopted Enterprise Resource Planning (ERP) systems, a software that provides integrated management of processes and transactions in real-time. These systems contain lots of information hence require secure authentication. Authentication in this case refers to the process of verifying an entity’s or device’s identity, to allow them access to specific resources upon request. However, there have been security and privacy concerns around ERP systems, where only the traditional authentication method of a username and password is commonly used. A password-based authentication approach has weaknesses that can be easily compromised. Cyber-attacks to access these ERP systems have become common to institutions of higher learning and cannot be underestimated as they evolve with emerging technologies. Some universities worldwide have been victims of cyber-attacks which targeted authentication vulnerabilities resulting in damages to the institutions reputations and credibilities. Thus, this research aimed at establishing authentication methods used for ERPs in Kenyan universities, their vulnerabilities, and proposing a solution to improve on ERP system authentication. The study aimed at developing and validating a multi-factor authentication prototype to improve ERP systems security. Multi-factor authentication which combines several authentication factors such as: something the user has, knows, or is, is a new state-of-the-art technology that is being adopted to strengthen systems’ authentication security. This research used an exploratory sequential design that involved a survey of chartered Kenyan Universities, where questionnaires were used to collect data that was later analyzed using descriptive and inferential statistics. Stratified, random and purposive sampling techniques were used to establish the sample size and the target group. The dependent variable for the study was limited to security rating with respect to realization of confidentiality, integrity, availability, and usability while the independent variables were limited to adequacy of security, authentication mechanisms, infrastructure, information security policies, vulnerabilities, and user training. Correlation and regression analysis established vulnerabilities, information security policies, and user training to be having a higher impact on system security. The three variables hence acted as the basis for the proposed multi-factor authentication framework for improve ERP systems security.
[...] Read more.The article describes the application of the Smart City concept and the economic opportunities it creates, infrastructure and services, and opportunities to improve governance. The main features of the Smart City concept, development directions and evolution, standards and solutions, and factors and obstacles to its implementation have been analyzed by the author. The experience of different countries in the application of digital technologies is discussed. The article provides the scope and structure of the "smart" market, application stages, and scenarios The international experience in this direction was widely analyzed and examples were shown. The article talks about smart cities, the construction of which has already begun in Azerbaijan. The application of the smart city concept in Azerbaijan has been studied. It is stressed that the spread of digital technologies for the construction of a smart city in Azerbaijan is a prerequisite. The Network Readiness Index (NRI) identifies the indicators that are holding back Azerbaijan in the ranking for 2021.
[...] Read more.