IJMECS Vol. 12, No. 6, 8 Dec. 2020
Cover page and Table of Contents: PDF (size: 345KB)
Full Text (PDF, 345KB), PP.46-54
Views: 0 Downloads: 0
House Price Prediction, Machine Learning Model, Support Vector Regression, Artificial Neural Network, XGBoost
Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field.
Nor Hamizah Zulkifley, Shuzlina Abdul Rahman, Nor Hasbiah Ubaidullah, Ismail Ibrahim, " House Price Prediction using a Machine Learning Model: A Survey of Literature", International Journal of Modern Education and Computer Science(IJMECS), Vol.12, No.6, pp. 46-54, 2020.DOI: 10.5815/ijmecs.2020.06.04
[1]A. S. Temür, M. Akgün, and G. Temür, “Predicting Housing Sales in Turkey Using Arima, Lstm and Hybrid Models,” J. Bus. Econ. Manag., vol. 20, no. 5, pp. 920–938, 2019, doi: 10.3846/jbem.2019.10190.
[2]A. Ebekozien, A. R. Abdul-Aziz, and M. Jaafar, “Housing finance inaccessibility for low-income earners in Malaysia: Factors and solutions,” Habitat Int., vol. 87, no. April, pp. 27–35, 2019, doi: 10.1016/j.habitatint.2019.03.009.
[3]A. Jafari and R. Akhavian, “Driving forces for the US residential housing price: a predictive analysis,” Built Environ. Proj. Asset Manag., vol. 9, no. 4, pp. 515–529, 2019, doi: 10.1108/BEPAM-07-2018-0100.
[4]Choong Wei Cheng, “Statistical Analysis of Housing Prices in Petaling,” Universiti Tunku Abdul Rahman, 2018.
[5]R. E. Febrita, A. N. Alfiyatin, H. Taufiq, and W. F. Mahmudy, “Data-driven fuzzy rule extraction for housing price prediction in Malang, East Java,” 2017 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2017, vol. 2018-Janua, pp. 351–358, 2018, doi: 10.1109/ICACSIS.2017.8355058.
[6]G. Gao et al., “Location-Centered House Price Prediction: A Multi-Task Learning Approach,” pp. 1–14, 2019, [Online]. Available: http://arxiv.org/abs/1901.01774.
[7]T. D. Phan, “Housing price prediction using machine learning algorithms: The case of Melbourne city, Australia,” Proc. - Int. Conf. Mach. Learn. Data Eng. iCMLDE 2018, pp. 8–13, 2019, doi: 10.1109/iCMLDE.2018.00017.
[8]Y. Y. S. Song, T. Zhou, H. Yachi, and S. Gao, “Forecasting house price index of China using dendritic neuron model,” PIC 2016 - Proc. 2016 IEEE Int. Conf. Prog. Informatics Comput., pp. 37–41, 2017, doi: 10.1109/PIC.2016.7949463.
[9]R. Aswin Rahadi, S. K. Wiryono, D. P. Koesrindartoto, and I. B. Syamwil, “Factors Affecting Housing Products Price in Jakarta Metropolitan Region,” Int. J. Prop. Sci., vol. 6, no. 1, pp. 1–21, 2016, doi: 10.22452/ijps.vol6no1.2.
[10]A. Nur, R. Ema, H. Taufiq, and W. Firdaus, “Modeling House Price Prediction using Regression Analysis and Particle Swarm Optimization Case Study : Malang, East Java, Indonesia,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 10, pp. 323–326, 2017, doi: 10.14569/ijacsa.2017.081042.
[11]A. Yusof and S. Ismail, “Multiple Regressions in Analysing House Price Variations,” Commun. IBIMA, vol. 2012, pp. 1–9, 2012, doi: 10.5171/2012.383101.
[12]A. Osmadi, E. M. Kamal, H. Hassan, and H. A. Fattah, “Exploring the elements of housing price in Malaysia,” Asian Soc. Sci., vol. 11, no. 24, pp. 26–38, 2015, doi: 10.5539/ass.v11n24p26.
[13]T. L. Chin and K. W. Chau, “A critical review of literature on the hedonic price model,” Int. J. Hous. Sci. Its Appl., vol. 27, no. 2, pp. 145–165, 2003.
[14]M. J. Ball, “Recent Empirical Work on the Determinants of Relative House Prices,” Urban Stud., vol. 10, no. 2, pp. 213–233, 1973, doi: 10.1080/00420987320080311.
[15]M. Rodriguez, “Managing Corporate Real Estate: Evidence from the Capital Markets.” Journal of Real Estate Literature, 1996.
[16]D. G. Owusu-Manu, D. J. Edwards, K. A. Donkor-Hyiaman, R. O. Asiedu, M. R. Hosseini, and E. Obiri-Yeboah, “Housing attributes and relative house prices in Ghana,” Int. J. Build. Pathol. Adapt., vol. 37, no. 5, pp. 733–746, 2019, doi: 10.1108/IJBPA-01-2019-0003.
[17]D.-G. Owusu-Manu, D. J. Edwards, K. A. Donkor-Hyiaman, R. O. Asiedu, M. R. Hosseini, and E. Obiri-Yeboah, “Housing attributes and relative house prices in Ghana,” Int. J. Hous. Mark. Anal., vol. 8, no. 2, p. 1998, 2018, doi: 10.1017/CBO9781107415324.004.
[18]J. M. Montero, R. Mínguez, and G. Fernández-Avilés, “Housing price prediction: parametric versus semi-parametric spatial hedonic models,” J. Geogr. Syst., vol. 20, no. 1, pp. 27–55, 2018, doi: 10.1007/s10109-017-0257-y.
[19]S. Lu, Z. Li, Z. Qin, X. Yang, and R. S. M. Goh, “A hybrid regression technique for house prices prediction,” IEEE Int. Conf. Ind. Eng. Eng. Manag., vol. 2017-Decem, pp. 319–323, 2018, doi: 10.1109/IEEM.2017.8289904.
[20]E. Pagourtzi, V. Assimakopoulos, T. Hatzichristos, and N. French, “Real estate appraisal: A review of valuation methods,” J. Prop. Invest. Financ., vol. 21, no. 4, pp. 383–401, 2003, doi: 10.1108/14635780310483656.
[21]Y. F. Chang, W. C. Choong, S. Y. Looi, W. Y. Pan, and H. L. Goh, “Analysis of housing prices in Petaling district, Malaysia using functional relationship model,” Int. J. Hous. Mark. Anal., vol. 12, no. 5, pp. 884–905, 2019, doi: 10.1108/ijhma-12-2018-0099.
[22]J. H. Chen, C. F. Ong, L. Zheng, and S. C. Hsu, “Forecasting spatial dynamics of the housing market using Support Vector Machine,” Int. J. Strateg. Prop. Manag., vol. 21, no. 3, pp. 273–283, 2017, doi: 10.3846/1648715X.2016.1259190.
[23]H. Y. Lin and K. Chen, “Predicting price of Taiwan real estates by neural networks and Support Vector Regression,” Recent Res. Syst. Sci. - Proc. 15th WSEAS Int. Conf. Syst. Part 15th WSEAS CSCC Multiconference, pp. 220–225, 2011.
[24]A. C. Goodman, “Andrew Court and the Invention of Hedonic Price Analysis,” J. Urban Econ., vol. 44, no. 2, pp. 291–298, 1998, doi: 10.1006/juec.1997.2071.
[25]S. Rosen, “Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition,” J. ofPolitical Econ., vol. 82, no. 50, pp. 34–55, 1974, doi: 10.1016/S0040-4039(00)85403-9.
[26]J. Maxey, “The effect of pricing factors on real estate transactions in Prince George ’ s county , Maryland,” no. February, p. 160, 2013, [Online]. Available: http://search.proquest.com.ezproxy.apollolibrary.com/docview/1372292022?accountid=35812.
[27]S. P. Ellis and S. Morgenthaler, “Leverage and breakdown in L1regression,” J. Am. Stat. Assoc., vol. 87, no. 417, pp. 143–148, 1992, doi: 10.1080/01621459.1992.10475185.
[28]P. Cohen, J. Cohen, J. Teresi, M. Marchi, and C. N. Velez, “Problems in the Measurement of Latent Variables in Structural Equations Causal Models,” Appl. Psychol. Meas., vol. 14, no. 2, pp. 183–196, 1990, doi: 10.1177/014662169001400207.
[29]T.-W. Lee and K. Chen, “Prediction of House Unit Price in Taipei City Using Support Vector Regression,” 2008, [Online]. Available: http://apiems2016.conf.tw/site/userdata/1087/papers/0307.pdf.
[30]F. Rosenblatt, “Recent Work on Theoritical Models of Biological Memory.” 1958.
[31]P. Jaiswal, N. K. Gupta, and A. Ambikapathy, “Comparative study of various training algorithms of artificial neural network,” 2018 Int. Conf. Adv. Comput. Commun. Control Netw., pp. 1097–1101, 2019, doi: 10.1109/icacccn.2018.8748660.
[32]M. F. Mukhlishin, R. Saputra, and A. Wibowo, “Predicting house sale price using fuzzy logic, Artificial Neural Network and K-Nearest Neighbor,” Proc. - 2017 1st Int. Conf. Informatics Comput. Sci. ICICoS 2017, vol. 2018-Janua, no. 1, pp. 171–176, 2018, doi: 10.1109/ICICOS.2017.8276357.
[33]W. T. Lim, L. Wang, Y. Wang, and Q. Chang, “Housing price prediction using neural networks,” 2016 12th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov. ICNC-FSKD 2016, pp. 518–522, 2016, doi: 10.1109/FSKD.2016.7603227.
[34]J. J. Wang et al., “Predicting House Price with a Memristor-Based Artificial Neural Network,” IEEE Access, vol. 6, pp. 16523–16528, 2018, doi: 10.1109/ACCESS.2018.2814065.
[35]H. Wu et al., “Influence factors and regression model of urban housing prices based on internet open access data,” Sustain., vol. 10, no. 5, pp. 1–17, 2018, doi: 10.3390/su10051676.
[36]J. H. Friedman, “Stochastic Gradient Boosting,” vol. 1, no. 3, pp. 1–10, 1999.
[37]G. Ke et al., “LightGBM: A highly efficient gradient boosting decision tree,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 3147–3155, 2017.
[38]Y. Zhou, “Housing Sale Price Prediction Using Machine Learning Algorithms,” 2020.
[39]T. Mohd, S. Masrom, and N. Johari, “Machine learning housing price prediction in petaling jaya, Selangor, Malaysia,” Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 11, pp. 542–546, 2019, doi: 10.35940/ijrte.B1084.0982S1119.
[40]A. Varma, A. Sarma, S. Doshi, and R. Nair, “House Price Prediction Using Machine Learning and Neural Networks,” Proc. Int. Conf. Inven. Commun. Comput. Technol. ICICCT 2018, pp. 1936–1939, 2018, doi: 10.1109/ICICCT.2018.8473231.
[41]R. Reed, “The relationship between house prices and demographic variables: An Australian case study,” Int. J. Hous. Mark. Anal., vol. 9, no. 4, pp. 520–537, 2016, doi: 10.1108/IJHMA-02-2016-0013.