ISSN: 2075-0161 (Print)
ISSN: 2075-017X (Online)
DOI: https://doi.org/10.5815/ijmecs
Website: https://www.mecs-press.org/ijmecs
Published By: MECS Press
Frequency: 6 issues per year
Number(s) Available: 134
IJMECS is committed to bridge the theory and practice of modern education and computer science. From innovative ideas to specific algorithms and full system implementations, IJMECS publishes original, peer-reviewed, and high quality articles in the areas of modern education and computer science. IJMECS is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of computer science, modern education and applications.
IJMECS has been abstracted or indexed by several world class databases: Scopus, SCImago, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..
IJMECS Vol. 17, No. 1, Feb. 2025
REGULAR PAPERS
Non-computing students often encounter greater challenges in programming courses compared to their computing counterparts, primarily stemming from a lack of motivation in the subject. Motivation plays a pivotal role in the success of introductory programming (IP) modules, with intrinsically and extrinsically motivated students exhibiting greater enjoyment and engagement in learning activities. While numerous studies have attempted to enhance motivation in IP modules, most have focused on computing students which is influenced lar gely by the constructivist theory. This paper addresses this gap by proposing a cognitive-based teaching framework aimed at bolstering motivation among non-computing students. The proposed approach employs the Explicit Instruction paradigm, where the instructor first designs learning strategies and provides students with detailed explanations, demonstrations, examples, and non-examples. This enables the students to apply the strategies in groups, practice with feedback, and finally individually. The effectiveness of this approach was assessed using first-year students at two universities, one in South Africa and the other in Cameroon. We collected student motivation data using a quantitative questionnaire post-experiment. The results indicate that the proposed teaching method had a positive impact on participant motivation in terms of attendance, perceived relevance, confidence, and satisfaction. However, the specific degree of improvement varied among the participants.
[...] Read more.At present, education is a matter of global concern and it is the responsibility of all States to be able to provide the ideal conditions so that it is accessible to the entire population. As indicated by one of the objectives of the 2030 Agenda which seeks to guarantee inclusive and equitable education quality. Different studies indicate that instructional design models allow the creation of optimal educational environments for all people and that their correct application allows students to generate satisfactory learning, however, there is an important group of people who are not considered in the tests of these models making it is impossible to reach the goal of achieving the desired educational inclusion. Therefore, the stated objective is to demonstrate that people with some type of disability have not been considered to work and to validate the studies that use different models, approaches or techniques to develop virtual learning environments. The results are worrisome as they demonstrate that of the 90 scientific articles analyzed, only 4.44% have included topics related to disability and of the total sample of participants that total 11,732 people, only 42, that is, 0.36%, had some type of disability. This shows that we are very far from being able to meet the sustainable development goal that seeks to guarantee inclusive and equitable quality education. Based on the results achieved, it is intended to sensitize governments, educational institutions and teachers around the world to work responsibly to close the gap that marginalizes people with disabilities and build appropriate virtual learning environments that guarantee that everyone can access and learn in the best way.
[...] Read more.In the work, an analysis of modern methods of Educational Data Mining (EDM) was carried out, on the basis of which a set of methods of EDM was developed for the training of vocational education teachers. The basic methods of EDM are considered, namely Prediction, Clustering, Relationship Mining, Distillation of Data for Human Judgment, Discovery with Models. The possibilities of using artificial neural networks, in particular, networks of Long-Short-Term Memory (LSTM), to predict the results of the educational process are described. The main methods of clustering and segmentation of educational data are considered. The basic methods of EDM are complemented by specialized methods of digital image pre-processing and methods of artificial intelligence, taking into account the peculiarities of the training of future specialists in engineering and pedagogical specialties. As specialized methods of digital image pre-processing, methods of filtering, contrast enhancement and contour selection are used. As specialized methods of artificial intelligence, methods of image segmentation, object detection on images, object detection using fuzzy logic were used. Methods of object detection on images using convolutional neural networks and using the Viola-Jones method are described. To process data with a certain degree of uncertainty, it is proposed to apply the methods of EDM and Fuzzy Logic in a integral manner. Ways of integrating Fuzzy Logic with methods of data clustering, image segmentation and object detection on images are considered. The possibilities of applying the developed complex of specialized methods of EDM in the educational process, in particular, when performing STEM (Science, Technology, Engineering and Mathematics) projects, are described.
[...] Read more.Aiming at the problems of large information loss and feature loss in the similarity design of high-dimensional panel data in clustering, a new panel data clustering method was proposed, which named an adaptive clustering method for panel data based on multi-dimensional feature extraction. This method defined "comprehensive quantity", "absolute quantity", "growth rate", "general trend" and "fluctuation quantity" of samples to extract features, and the five features were weighted to calculate the samples comprehensive distance. On this basis, ward method is used for clustering. This method can greatly reduces the loss of effective information. To verify the effectiveness of the method, cluster empirical analysis was conducted using GDP panel data from 31 regions in China, and the clustering results were compared with those of other clustering models. The experimental results showed that the proposed model was more interpretable and the clustering results were better.
[...] Read more.Student academic performance (SAP) prediction is a key issue in education data analysis. Also, the assessment of students’ performance is used to enhance the efficiency of educational institutions. With the development in educational institutions and modern technology, focusing on the academic performance prediction of the student based on access to the smartphone is the need of the hour. To improve the accuracy of student academic performance prediction, the Canberra Match Normalization-based Generalized Canonical Correlative Decision Stump Classifier (CMN-GCCDSC) is introduced. Initially, student data are collected from the dataset. After the data collection process, the proposed CMN-GCCDSC technique is applied in two phases namely data preprocessing and classification respectively. In the first phase, data preprocessing is carried out to eliminate duplicate data using the Canberra Match Data Normalization technique to minimize space and time consumption. In the second phase, data classification is performed with preprocessed output to classify student academic performance using a generalized canonical correlative decision stump classifier based on Smartphone addiction prediction. The generalized canonical correlation analysis is used for decision-making. Based on analysis, student academic performance is classified and results are obtained. An experimental assessment of the proposed CMN-GCCDSC technique and existing methods is carried out with metrics such as accuracy, sensitivity, specificity, space complexity, and time complexity. The CMN-GCCDSC technique is an effective solution that addresses the limitations of Genetic Algorithm (GA)-based decision tree classifiers. By combining the Decision Stump Classifier (DSC) approach with Generalized Canonical Correlation (GCC), the most important feature to consider for academic prediction among students can be selected, ultimately reducing the dimensionality of the dataset, and improving classifier performance. With higher accuracy rates achieved, this technique can help identify at-risk students early and discover hidden trends and patterns in student performance, leading to improved academic outcomes with additional support from institutions and faculties.
[...] Read more.In recent years, the widespread use of social networks has empowered online users to freely share their opinions on diverse aspects of life. Sentiment Analysis (SA) has consequently emerged as a pivotal domain within Natural Language Processing (NLP), serving a crucial role in discerning sentiment orientations and extracting valuable insights from public viewpoints. Analyzing sentiment in Arabic poses distinctive challenges due to its varied dialects, as well as its intricate morphological and syntactic structures. Deep Learning (DL) models, particularly Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), have exhibited remarkable proficiency in Sentiment Analysis. LSTM networks excel in capturing sequential data patterns, while CNNs offer inherent advantages in feature selection, yielding superior performance compared to conventional machine learning (ML) algorithms. In our study, we propose an ensemble approach that integrates CNN and LSTM techniques to classify and forecast sentiment in tweets. We evaluate the effectiveness of this hybrid model against individual LSTM and CNN methodologies employing the FastText word embedding model. Experimental findings illustrate that our LSTM-CNN hybrid approach, leveraging the FastText word embedding model, significantly improves text classification accuracy.
[...] Read more.Customer attrition is a major issue that affects the telecom industry as it reduces the company’s revenues and the overall customer base. Solving this problem involves the use of accurate prediction models that utilize CRM data and machine learning algorithms. Though several research papers have been written and published on CCP in the telecom industry, the existing models lack reliability and accuracy. The use of sophisticated data mining and machine learning techniques has been widely practised for improving predictive models. Churn prediction models that exist have their problems in terms of accuracy and errors. It is still important to develop more sophisticated models that can work well with large data and give accurate predictions. Therefore, this work aims to offer the OKMSVM model for multiclass cancer-type classification. The method applied for the dimensionality reduction pre-process is Kernel Principal Component Analysis (KPCA) and the feature selection pre-process is done using Ant Lion Optimization (ALO). This combination assists in improving the chance of the prediction and also the reduction of probable errors. The performance of the proposed OKMSVM model was compared with some of the most common churn prediction models such as HTLSVM, DNN, ICPCSF and other ML models. It was seen that the OKMSVM model outperformed other models with an accuracy of 91. 5%, an AUC of 85. Accurate, with a correlation coefficient of 0. 838. It further shows that this model is better than the current models in the market in estimating customer churn.
[...] Read more.Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students' placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students' placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of this study could be beneficial to educational institutions, students, and career counsellors.
[...] Read more.Large Language Models (LLMs) have received significant attention due to their potential to transform the field of education and assessment through the provision of automated responses to a diverse range of inquiries. The objective of this research is to examine the efficacy of three LLMs - ChatGPT, BingChat, and Bard - in relation to their performance on the Vietnamese High School Biology Examination dataset. This dataset consists of a wide range of biology questions that vary in difficulty and context. By conducting a thorough analysis, we are able to reveal the merits and drawbacks of each LLM, thereby providing valuable insights for their successful incorporation into educational platforms. This study examines the proficiency of LLMs in various levels of questioning, namely Knowledge, Comprehension, Application, and High Application. The findings of the study reveal complex and subtle patterns in performance. The versatility of ChatGPT is evident as it showcases potential across multiple levels. Nevertheless, it encounters difficulties in maintaining consistency and effectively addressing complex application queries. BingChat and Bard demonstrate strong performance in tasks related to factual recall, comprehension, and interpretation, indicating their effectiveness in facilitating fundamental learning. Additional investigation encompasses educational environments. The analysis indicates that the utilization of BingChat and Bard has the potential to augment factual and comprehension learning experiences. However, it is crucial to acknowledge the indispensable significance of human expertise in tackling complex application inquiries. The research conducted emphasizes the importance of adopting a well-rounded approach to the integration of LLMs, taking into account their capabilities while also recognizing their limitations. The refinement of LLM capabilities and the resolution of challenges in addressing advanced application scenarios can be achieved through collaboration among educators, developers, and AI researchers.
[...] Read more.Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field.
[...] Read more.With the rapid and constant changes in computer and information technology, the content and learning methods in Computer Science related courses need to be continuously adapted and consistently aligned with the latest developments in the field. This paper proposes a learning approach called the Gallery-walk integrated Project-Based Learning (G-PBL) which can develop students’ lifelong learning skills that are extremely crucial for Computer Science students. The G-PBL was designed by incorporating the advantages of Project-Based Learning (PBL) and gallery walk learning strategy. In contrast to traditional PBL where students may present their project work to instructors only, students have to present their project work to their classmates as part of the G-PBL approach. All students are required to evaluate their peers’ project work and then give feedback and suggestions. For the research experiments, the G-PBL was implemented as an instructional approach in two Computer Science related courses. This study focuses on exploring the differences in knowledge gain, learning motivation, and perceived usefulness when learning by using the teacher-centered and G-PBL approach. Moreover, the impact of gender differences on learning outcomes is also investigated. The results reveal that using the G-PBL approach helps students to gain more knowledge significantly, for both male and female students. In terms of motivation, female students are more favorable toward the G-PBL approach. On the contrary, male students prefer learning via a teacher-centered approach. Regarding the perceived usefulness, female students strongly view the G-PBL as a highly effective learning approach, whereas male students are more prone to concur that the teacher-centered approach is a more effective learning method.
[...] Read more.Due to the COVID-19 situation, all activities, including education, were shifted to online platforms. Consequently, instructors encountered increased challenges in evaluating students. In traditional assessment methods, instructors often face ambiguous cases when evaluating students’ competencies. Recent research has focused on the effectiveness of fuzzy logic in assessing students’ competencies, considering the presence of uncertain factors or multiple variables. Additionally, demographic characteristics, which can potentially influence students’ performance, are not typically utilized as inputs in the fuzzy logic method. Therefore, analyzing students’ performance by incorporating these factors is crucial in suggesting adjustments to teaching and learning strategies. In this study, we employ a combination of fuzzy logic and hierarchical linear regression to analyze students’ performance. The experiment involved 318 students from various programs and showed that the hybrid approach assessed students’ performance with greater nuance and adaptability when compared to a traditional method. Moreover, the findings in this study revealed the following: 1) There are differences in students’ performance between traditional and fuzzy evaluation methods; 2) The learning method is an impact on students’ fuzzy grades; 3) Students studying online do not perform better than those studying onsite. These findings suggest that instructors and educators should explore effective strategies being fair and suitable in assessment and learning.
[...] Read more.Technology has changed the way we teach and the way we learn. Many learning theories can be used to apply and integrate this technology more effectively. There is a close relationship between technology and constructivism, the implementation of each one benefiting the other. Constructivism states that learning takes place in contexts, while technology refers to the designs and environments that engage learners. Recent efforts to integrate technology in the classroom have been within the context of a constructivist framework. The purpose of this paper is to examine the definition of constructivism, incorporating technology into the classroom, successful technology integration into the classroom, factors contributing to teachers’ use of technology, role of technology in a constructivist classroom, teacher’s use of learning theories to enable more effective use of technology, learning with technology: constructivist perspective, and constructivism as a framework for educational technology. This paper explains whether technology by itself can make the education process more effective or if technology needs an appropriate instructional theory to indicate its positive effect on the learner.
[...] Read more.It is important to study learning styles because recent studies have shown that a match between teaching and learning styles helps to motivate students´ process of learning. That is why teachers should identify their own teaching styles as well as their learning styles to obtain better results in the classroom. The aim is to have a balanced teaching style and to adapt activities to meet students´ style and to involve teachers in this type of research to assure the results found in this research study. Over 100 students complete a questionnaire to determine if their learning styles are auditory, visual, or kinesthetic. Discovering these learning styles will allow the students to determine their own personal strengths and weaknesses and learn from them. Teachers can incorporate learning styles into their classroom by identifying the learning styles of each of their students, matching teaching styles to learning styles for difficult tasks, strengthening weaker learning styles. The purpose of this study is to explain learning styles, teaching styles match or mismatch between learning and teaching styles, visual, auditory, and kinesthetic learning styles among Iranian learners, and pedagogical implications for the EFL/ESL classroom. A review of the literature along with analysis of the data will determine how learning styles match the teaching styles.
[...] Read more.Motivation has been called the “neglected heart” of language teaching. As teachers, we often forget that all of our learning activities are filtered through our students’ motivation. In this sense, students control the flow of the classroom. Without student motivation, there is no pulse, there is no life in the class. When we learn to incorporate direct approaches to generating student motivation in our teaching, we will become happier and more successful teachers. This paper is an attempt to look at EFL learners’ motivation in learning a foreign language from a theoretical approach. It includes a definition of the concept, the importance of motivation, specific approaches for generating motivation, difference between integrative and instrumental motivation, difference between intrinsic and extrinsic motivation, factors influencing motivation, and adopting motivational teaching practice.
[...] Read more.Entrepreneurship is the key driver of economic progress in many countries; thus, many countries have introduced policies to promote a more entrepreneurial environment. This study assesses the impact of factors affecting entrepreneurial intention of university students. The data was collected through a survey of 341 students at 09 leading universities in Hanoi, Vietnam and analyzed using structural equation modeling (SEM) with SPSS and Amos software. The research results show that entrepreneurial skills, entrepreneurial environment and subjective norms either directly or indirectly affect business motivation and entrepreneurial intention of university students. Thus, it is suggested that university and other educational institutions should provide more activities and taught courses that help students acquire the knowledge and skills necessary for entrepreneurship.
[...] Read more.The use of multimedia in teaching and learning leads to higher learning. Multimedia refers to any computer-mediated software or interactive application that integrates text, color, graphical images, animation, audio sound, and full motion video in a single application. Multimedia learning systems offer a potentially venue for improving student understanding about language. Teachers try to find the most effective way to create a better foreign language teaching and learning environment through multimedia technologies. In this paper, the researcher defines multimedia, elaborates the rationale for using multimedia, identifies multimedia learning, mentions principles of multimedia, explains theoretical basis of multimedia English teaching, reviews roles of teachers and learners in multimedia environment, discusses the relationship between multimedia and learning, and states the strength of multimedia English teaching. The review of literature shows that teachers need to make full use of multimedia to create an authentic language teaching and learning environment where students can easily acquire a language naturally and effectively.
[...] Read more.Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students' placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students' placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of this study could be beneficial to educational institutions, students, and career counsellors.
[...] Read more.There appears to be a tendency for the strategies and methods that have been offered in OOP course learning to affect the improvement of individual skills only. There is a significant need for learning strategies which are relevant and able of improving collaborative working skills. The purpose of this study is to develop a Collaborative Learning and Programming model suitable for Object-Oriented Programming courses and assess its validity, practicality, and effectiveness. The implementation of the CLP model was conducted using the ADDIE development procedure by involving 7 experts, 35 experimental class students, 23 control class students and 4 lecturers of the Object-Oriented Programming course. The survey results showed that the CLP model was valid, practical, and effective in achieving these goals. The validity test results were verified based on experts' assessment, indicating that the aspects contained in the CLP model were valid with an Aiken's value V =0.89. The practicality test results indicated that the model was highly practical with the practicality value of 89.95% from students and 89.67% from lecturers. Finally, using the CLP model demonstrated its effectiveness in reducing the abstraction and complexity of OOP courses and improving student collaboration, particularly in programming tasks. The significance of conducting this survey is that it provides evidence for the effectiveness of the CLP model in achieving its intended goals and can inform the development of future OOP courses and programming tasks. The survey was conducted well, as it used both expert assessment and student and lecturer feedback to assess the validity, practicality, and effectiveness of the CLP model.
[...] Read more.With the rapid and constant changes in computer and information technology, the content and learning methods in Computer Science related courses need to be continuously adapted and consistently aligned with the latest developments in the field. This paper proposes a learning approach called the Gallery-walk integrated Project-Based Learning (G-PBL) which can develop students’ lifelong learning skills that are extremely crucial for Computer Science students. The G-PBL was designed by incorporating the advantages of Project-Based Learning (PBL) and gallery walk learning strategy. In contrast to traditional PBL where students may present their project work to instructors only, students have to present their project work to their classmates as part of the G-PBL approach. All students are required to evaluate their peers’ project work and then give feedback and suggestions. For the research experiments, the G-PBL was implemented as an instructional approach in two Computer Science related courses. This study focuses on exploring the differences in knowledge gain, learning motivation, and perceived usefulness when learning by using the teacher-centered and G-PBL approach. Moreover, the impact of gender differences on learning outcomes is also investigated. The results reveal that using the G-PBL approach helps students to gain more knowledge significantly, for both male and female students. In terms of motivation, female students are more favorable toward the G-PBL approach. On the contrary, male students prefer learning via a teacher-centered approach. Regarding the perceived usefulness, female students strongly view the G-PBL as a highly effective learning approach, whereas male students are more prone to concur that the teacher-centered approach is a more effective learning method.
[...] Read more.Due to the COVID-19 situation, all activities, including education, were shifted to online platforms. Consequently, instructors encountered increased challenges in evaluating students. In traditional assessment methods, instructors often face ambiguous cases when evaluating students’ competencies. Recent research has focused on the effectiveness of fuzzy logic in assessing students’ competencies, considering the presence of uncertain factors or multiple variables. Additionally, demographic characteristics, which can potentially influence students’ performance, are not typically utilized as inputs in the fuzzy logic method. Therefore, analyzing students’ performance by incorporating these factors is crucial in suggesting adjustments to teaching and learning strategies. In this study, we employ a combination of fuzzy logic and hierarchical linear regression to analyze students’ performance. The experiment involved 318 students from various programs and showed that the hybrid approach assessed students’ performance with greater nuance and adaptability when compared to a traditional method. Moreover, the findings in this study revealed the following: 1) There are differences in students’ performance between traditional and fuzzy evaluation methods; 2) The learning method is an impact on students’ fuzzy grades; 3) Students studying online do not perform better than those studying onsite. These findings suggest that instructors and educators should explore effective strategies being fair and suitable in assessment and learning.
[...] Read more.Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field.
[...] Read more.Entrepreneurship is the key driver of economic progress in many countries; thus, many countries have introduced policies to promote a more entrepreneurial environment. This study assesses the impact of factors affecting entrepreneurial intention of university students. The data was collected through a survey of 341 students at 09 leading universities in Hanoi, Vietnam and analyzed using structural equation modeling (SEM) with SPSS and Amos software. The research results show that entrepreneurial skills, entrepreneurial environment and subjective norms either directly or indirectly affect business motivation and entrepreneurial intention of university students. Thus, it is suggested that university and other educational institutions should provide more activities and taught courses that help students acquire the knowledge and skills necessary for entrepreneurship.
[...] Read more.The project-based learning (PjBL) paradigm is often considered the most advanced in vocational education. The increasing use of the PjBL paradigm in vocational education is an intriguing topic of study. In line with the rapid growth of information technology, it enables PjBL in vocational education to help students develop problem-solving, critical thinking, and teamwork skills. In this study, a bibliometric method is used to provide insight into the structure of the subject, social networks, research trends, and issues reflecting project-based learning in vocational education. On November 27, 2022, the Scopus database was searched using project-based learning terms in the title. The second search field appears in the title, abstract, and keywords vocational education or TVET, restricted to journal articles or proceedings and in English to keep them current. This analysis revealed 60 articles in Scopus-indexed journals and proceedings between 2010 and 2022. Dwi Agus Sudjimat from Malang State University, Indonesia, was the most prolific author, having authored four articles on the subject. Indonesia is the nation investing the most in developing PjBL models. According to the thematic data, project-based learning is located in the first quadrant, has high centrality and density, and has well-developed questions related to the study topic. The results of this study show that the project-based learning model that is evolving in vocational education is likely to continue to be an important teaching approach in this field.
[...] Read more.The foundational tenet of any nation's prosperity, character, and progress is education. Thus, a lot of emphasis is laid on quality of education and education delivery system in India with current financial year (2022-23) education budget outlay of Rs. 1,04,277.72 crores. This research contributes in analyzing how students perform in academics depending upon the time spent on their extracurricular activities with the help of three Machine Learning prediction algorithms namely Decision Tree, Random Forest and KNN. Additionally, in order to comprehend the underlying causes of the shortcomings in each machine learning technique, comparisons of the prediction outcomes obtained by these various techniques are made. On our dataset, the Decision Tree outscored all other algorithms, achieving F1 84 and an accuracy of 85%. The research, which is at an introductory level, is meant to open the door for more complexes, specialised, and in-depth studies in the area of predicting the performance in academics.
[...] Read more.The development of methods for assessing lecturers' performance is needed to motivate lecturers to achieve institutional targets. Currently, lecturers are required to be able to adapt to the rapid development of technology. Lecturer performance assessment must be done periodically. Competence is measured as a basis for planning resource development activities. The method that is often used for assessing lecturer performance is the Simple Additive Weighting (SAW) method. However, the SAW method has drawbacks, namely 1) the process of determining criteria is only carried out by the leadership (subjective); 2) The SAW method can only be applied to multi-criteria data ; 3) Data ranking problems. Based on this deficiency, a new method was built, namely, the Weighted Performance Indicator (WPI) method using respondents’ opinion to determine the criteria. This study aims to compare the performance of the two methods. Testing criteria using SPPS application dan WPI method, while testing methods utilized the SAW method and the WPI method. The results of the criterion test show the Percentage of Similarity of data validity = 96.7 % witht the minimum percentage limit (MPL) = 40%. While the results of the SAW method and WPI method testing resulted in the highest score in the 13th alternative, namely SAW score (v13) = 793.76 and WP score (WP13) = 0.928, and the lowest value in the 30th alternative, SAW score (v30) = 18.60 and WP score (WP30) = 0.140. the ranking positions in these two methods show similarities. However, for other alternatives, the rating value can be different.
The WPI method is a scientific development in the field of decision support systems that can be applied to other performance assessments, such other human resources, system performance assesment etc.
The results of this study prove that the WPI method can be used as a performance assessment method with different characteristics from the SAW method.
During COVID-19 pandemic, most tertiary institutions in Ghana were compelled to continue delivering of lectures online using internet technologies as was in the case of other countries. Senior high schools in Ghana were, however, not asked to do same, currently, the setting of most literature on blended or online learning in Ghana is focused on tertiary education. This paper situates the blended learning model in a less endowed senior high school to unearth the prospect of its implementation. The research provides an alternative to the traditional face-to-face learning, which is faced with the challenge of inadequate infrastructure, high number of students to class ratio, less compatibility with 21st learning skills and long-life learning in Ghana.
A customed Moodle application as web application tool, hosted students online in both synchronous and asynchronous interactions. Purposive quota sampling size technique was used to select an appreciable sample size to fully go through the traditional face-face model for a term and then study through the blended learning model for another term. Students’ examination performances for both were analyzed with a paired t test statistical model. Interviews with participants were conducted to ascertain their evaluation of the blended learning model and questionnaires were also administered to discover the institutional, technological, and human resource readiness for blended learning in senior high schools. The analysis of the data gathered, proved that blended learning in senior high schools has high prospect and is better alternative to face-to-face learning in Ghana.
[...] Read more.