IJMECS Vol. 13, No. 4, 8 Aug. 2021
Cover page and Table of Contents: PDF (size: 821KB)
Full Text (PDF, 821KB), PP.55-67
Views: 0 Downloads: 0
Convolutional Neural Network, Classification Gender, Fingerprint, Deep Learning, TensorFlow
Gender is one of the vital information to identify someone. If we can decide with conviction whether an individual is male or female, it will restrain the inquiry list and abbreviate the pursuit time. The way toward distinguishing fingerprints is one of the significant, simple to do assortment strategies, the cost is cheap, and a dactyloscopy authority does the particular outcome. The classification of the image gets the issues in computer vision, where a computer can mimic the capacity of an individual to comprehend the data in the image. Process of classifying image can be performing with deep learning where the process like the working of the brain in thinking and trying to reproduce part of its functions by using units associated with relationship, like a neuron. Convolutional neural network is one type of deep learning. In this research, will be doing to classification gender based on fingerprint using method Convolutional Neural Network, and then we will make three models to determined gender, with a total of 49270 image data that included test data and training data by classifying two categories, male and female. Of the three models, we are taking the highest accuracy to use in making this application. Results of this research is we get Model2 will be used as a model CNN with the accuracy level of 99.9667%.
Ahmad Ilham Gustisyaf, Ardiles Sinaga, " Implementation of Convolutional Neural Network to Classification Gender based on Fingerprint ", International Journal of Modern Education and Computer Science(IJMECS), Vol.13, No.4, pp. 55-67, 2021.DOI: 10.5815/ijmecs.2021.04.05
[1] D. I. Marbun, D. Ilmu, K. Forensik, F. K. Usu, and R. H. A. Malik, “Penentuan Jenis Kelamin Berdasarkan Kerapatan Alur Sidik Jari,” Maj. Kedokt. Nusant. J. Med. Sch., vol. 51, no. 1, pp. 6–9, 2019.
[2] D. Scarlet, “What is biometrics? 10 physical and behavior identifiers that can be used for authentication,” Journal of Chemical Information and Modeling, 2013. [Online]. Available: https://www.csoonline.com/article/3339565/what-is-biometrics-and-why-collecting-biometric-data-is-risky.html. [Accessed: 29-Feb-2020].
[3] M. K. Shinde and S. A. Annadate, “Analysis of fingerprint image for gender classification or identification: Using wavelet transform and singular value decomposition,” Proc. - 1st Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2015, pp. 650–654, 2015, doi: 10.1109/ICCUBEA.2015.133.
[4] A. Santoso and G. Ariyanto, “Implementasi Deep Learning Berbasis Tensorflow,” J. Emit., vol. 18, no. 01, pp. 22–27, 2018.
[5] X. Cao, L. Xu, D. Meng, Q. Zhao, and Z. Xu, “Integration of 3-dimensional discrete wavelet transform and Markov random field for hyperspectral image classification,” Neurocomputing, vol. 226, no. July, pp. 90–100, 2017, doi: 10.1016/j.neucom.2016.11.034.
[6] Z. Li, B. Niu, F. Peng, G. Li, Z. Yang, and J. Wu, “Classification of Peanut Images Based on Multi-features and SVM,” IFAC-PapersOnLine, vol. 51, no. 17, pp. 726–731, 2018, doi: 10.1016/j.ifacol.2018.08.110.
[7] Z. Zhang, “Semi-supervised hyperspectral image classification algorithm based on graph embedding and discriminative spatial information,” Microprocess. Microsyst., vol. 75, p. 103070, 2020, doi: 10.1016/j.micpro.2020.103070.
[8] J. Zhao, Q. Hu, G. Liu, X. Ma, F. Chen, and M. M. Hassan, “AFA: Adversarial fingerprinting authentication for deep neural networks,” Comput. Commun., vol. 150, no. December 2019, pp. 488–497, 2020, doi: 10.1016/j.comcom.2019.12.016.
[9] I. G. Y. B. and A. Courville, “Deep Learning Ian,” Foreign Aff., vol. 91, no. 5, pp. 1689–1699, 2012, doi: 10.1017/CBO9781107415324.004.
[10] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, “Land Use Classification in Remote Sensing Images by Convolutional Neural Networks,” no. September, 2015.
[11] Y. Chen, X. Zhao, and X. Jia, “Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 6, pp. 2381–2392, 2015, doi: 10.1109/JSTARS.2015.2388577.
[12] “APPLICATION OF DEEP-LEARNING ALGORITHMS TO MSTAR DATA Haipeng Wang , Member , IEEE , Sizhe Chen , Student Member , IEEE , Feng Xu , Senior Member , IEEE and Ya-Qiu Jin , Fellow , IEEE Key Laboratory for Information Science of Electromagnetic Waves ( MoE ),” IEEE Int. Geosci. Remote Sens. Symp. 2015, pp. 3743–3745, 2015.
[13] R. C. Hidayatullah and S. Violina, “Convolutional Neural Network Architecture and Data Augmentation for Pneumonia Classification from Chest X-Rays Images,” vol. 5, no. 2, pp. 158–164, 2020.
[14] W. S. Jeon and S. Y. Rhee, “Fingerprint pattern classification using convolution neural network,” Int. J. Fuzzy Log. Intell. Syst., vol. 17, no. 3, pp. 170–176, 2017, doi: 10.5391/IJFIS.2017.17.3.170.
[15] Kaggle, “Sokoto Coventry Fingerprint Dataset (SOCOFing).” [Online]. Available: https://www.kaggle.com/ruizgara/socofing.
[16] L. Marifatul Azizah, S. Fadillah Umayah, and F. Fajar, “Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer,” Semesta Tek., vol. 21, no. 2, pp. 230–236, 2018, doi: 10.18196/st.212229.
[17] B. K. Rajan, N. Anto, and S. Jose, “Fusion of iris & fingerprint biometrics for gender classification using neural network,” 2nd Int. Conf. Curr. Trends Eng. Technol. ICCTET 2014, pp. 216–221, 2014, doi: 10.1109/ICCTET.2014.6966290.
[18] R. S. Falasev, “Matriks Kookurensi Aras Keabuan ( Gray Level Co-Ocurrence Matrix ),” no. August 2016, 2011.
[19] A. D. A. Veneza, “Fungsi Sidik Jari Dalam Mengidentifikasi Korban dan Pelaku Tindak Pidana,” Universitas Hasanuddin, 2013.
[20] STIFIn, “Ilmu Rumusan Sidik Jari dan Tes Sidik Jari STIFIn.” [Online]. Available: https://stifinfamily.com/ilmu-rumusan-sidik-jari-dan-tes-sidik-jari-stifin/. [Accessed: 15-Mar-2020].
[21] Investopedia, “Deep Learning.” [Online]. Available: https://www.investopedia.com/terms/d/deep-learning.asp. [Accessed: 15-Mar-2020].
[22] P. N. Rena, “Penerapan Metode Convolutional Neural Network Pada Pendeteksi Gambar Notasi Balok,” Universitas Islam Negeri Syarif Hidayatullah Jakarta, 2019.
[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
[24] Y. Ju, X. Wang, and X. Chen, “Research on OMR recognition based on convolutional neural network tensorflow platform,” Proc. - 2019 11th Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2019, pp. 688–691, 2019, doi: 10.1109/ICMTMA.2019.00157.
[25] S. R. DEWI, “Deep Learning Object Detection Pada Video Menggunakan Tensorflow Dan Convolutional Neural Network,” Universitas Islam Indonesia, 2018.
[26] V. Rezende, M. Costa, A. Santos, and R. C. L. De Oliveira, “Image processing with convolutional neural networks for classification of plant diseases,” Proc. - 2019 Brazilian Conf. Intell. Syst. BRACIS 2019, pp. 705–710, 2019, doi: 10.1109/BRACIS.2019.00128.
[27] P. Bashivan, I. Rish, M. Yeasin, and N. Codella, “Learning representations from EEG with deep recurrent-convolutional neural networks,” 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., no. November, 2016.
[28] E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, p. 61, 2018, doi: 10.24895/jig.2018.24-2.810.
[29] S. R. Putra, “Implementasi Convolutional Neural Network Untuk Klasifikasi Obyek Pada Citra,” Institut Teknologi Sepuluh Nopember, 2015.
[30] U. Leiden and R. Magni, Deep Learning for Visual Understanding Proefschrift. 2017.
[31] K. P. Shung, “Accuracy, Precision, Recall or F1?” [Online]. Available: https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9. [Accessed: 10-May-2020].
[32] C. Nicholson, “Evaluation Metrics for Machine Learning - Accuracy, Precision, Recall, and F1 Defined.” [Online]. Available: https://pathmind.com/wiki/accuracy-precision-recall-f1. [Accessed: 10-May-2020].