Measures for the Ontological Relations in Enterprise

Full Text (PDF, 742KB), PP.13-23

Views: 0 Downloads: 0

Author(s)

Sabria Hadj Tayeb 1,* Myriam Noureddine 1

1. Département Mathématique/ Informatique Universitédes Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP1505, El M’naouar Oran, 31000, Algérie

* Corresponding author.

DOI: https://doi.org/10.5815/ijmecs.2017.09.02

Received: 17 Jan. 2016 / Revised: 13 Jul. 2017 / Accepted: 22 Aug. 2017 / Published: 8 Sep. 2017

Index Terms

Enterprise, Performance, Ontology, Effectiveness

Abstract

In order to improve a system performance, it is significant to estimate the exchange rate of relationships between components of the system, in particular when the considered system is production or service companies. Indeed, bad and inappropriate relationships can generate dysfunctions, slowdowns or, more generally, loss of performance in enterprise leading to a decline in growth and competitiveness.
Because of the heterogeneity of information and data, it is necessary to modeling relationships and ontologies are currently among the most evoked models in knowledge engineering. The aim is to define structured vocabularies, bringing together useful concepts of a domain and their relationships thus serving to organize, exchange information in an unambiguous way. Ontologies are widely applied to ensure semantic interoperability describing the enterprise structure and the exchange rate of existing relationships can be valued through their degree of effectiveness.
This paper presents measures for the ontological relations in the enterprise. Our approach aims first to extract the set of relationships from an ontology previously created, then classify these relations, according to two types giving a weighting to calculate their degree of effectiveness. The implementation process is proposed on the local enterprise of steel wire drawing processing, giving degree of effectiveness for existing relationships. A sensitivity analysis is done to compare and interpret the different results.

Cite This Paper

Sabria Hadj Tayeb, Myriam Noureddine, " Measures for the Ontological Relations In Enterprise", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.9, pp. 13-23, 2017. DOI:10.5815/ijmecs.2017.09.02

Reference

[1]D. Chen, G. Doumeingts, F Vernadat “Architectures for enterprise integration and interoperability: Past, present and future” . Journal of Computers in industry, Elsevier, pp.647–659, 2008.
[2]N. Mellal. “Réalisation de l’interopérabilité sémantique des systèmes, basée sur les ontologies et les flux d’information ”. Doctoral thesis, University of Savoie, 2007.
[3]JL. Moigne. “Modeling complex systems”. Dunod, 1990.
[4]E. Yahia, M. Lezoche, A. Aubry, H. Panetto. “Semantics enactment for interoperability assessment in enterprise information systems”. Annual Reviews in Control 36-Elsevier, pp. 101-117,2012.
[5]T. Gruber. “A translation approach to portable ontology specifications”. Knowledge Acquisition, pp. 199–220, 1993.
[6]F. Fürst. “Contribution à l’ingénierie des ontologies : une méthode et un outil d’opérationnalisation”. Doctoral thesis, EPU-Nancy (France), 2004.
[7]U.Yadav, GS Narula, N.Duhan, V.Jain. “Ontology Engineering and development aspects: A survey”. International Journal of Education and Management Engineering JEME, 2016.
[8]RJ. Rovetto. “ An ontological architecture for orbital debris data”, Earth science informatics , Springer, USA, 2016.
[9]P. Cimiano. “Ontology learning and population from text algorithms, evaluation and applications”.Springer Science & Business Media, 2006.
[10]Iso 1087. “Terminology work-vocabulary , theory and application first edition”. Licensed to Business semantics LTD/Donald chapin, 2000.
[11]J. Arpirez , O. Corcho, M. Fernández-López, A. Gómez-Pérez A. “WebODE : a workbench for ontological engineering”. First international Conference on Knowledge Capture, pp.6–13, 2001.
[12]Tutorial tool Protege http://protege.stanford.edu/
[13]M. Fernandez-Lopez, A. Gomez-Perez, N. Juristo. “Methontology: from ontological art towards ontological engineering”. Proceedings of the AAAI97 Springer Symposium, pp. 33–40, Stanford, USA, 1997.
[14]O. Corcho, A. Fernandez-Lopez, A. Gomez-Perez A. Lopez-Cima. “Building legal ontologies with methontology and WebODE”. Law and the Semantic Web, vol. 3369, Springer , pp.142–157, 2005.
[15]B. Mustafa, N. Aldabagh. “Ojadeac, an ontology based access control model for jade platform”. International Journal of Advanced Computer Science and Applications, Vol. 5, No. 5. 2014.
[16]Official site of JADE http://jade.tilab.com
[17]M. Horridge, S. Bechhofer. “The owl api: a java api for owl ontologies”. Journal Semantic Web. Volume 2 Issue 1, pp.11-21. 2011.
[18]Official site of JENA http://jena.sourceforge.net/
[19]V. Galdemar, L. Gilles, MO. Simon. “ Performance, efficacité, efficience : les critéres d’evaluation des politiques sociales sont-ils pertinents ? ”, CREDOC, research paper number 209, 2012.
[20]S.Greco, B.Matarazzo, R.Slowinski. “Rough sets theory multicriteria decision analysis“. European Journal of Operational Research, elsevier, 2001.
[21]Tutorial plugin OntoViz. http://protegewiki.stanford.edu/wiki/OntoViz