Work place: Development Department, Apifon S.A., Thessaloniki, 570 01, Greece
E-mail: a.deligiannis@apifon.com
Website:
Research Interests: Computational Science and Engineering, Computational Engineering, Computer systems and computational processes, Data Structures and Algorithms
Biography
Alexandros Deligiannis obtained his MSc. in Big Data Science from the Queen Mary University of London, UK and his BSc. in Mathematics from the Aristotle University of Thessaloniki, Greece. Currently, he is working as data engineer in the Research and Development department of Apifon, Greece in the field of personalized communication in order to increase sales and improve customer experience. His main research interests include model-driven systems engineering and ad-hoc process optimization.
By Alexandros Deligiannis Charalampos Argyriou
DOI: https://doi.org/10.5815/ijieeb.2020.04.01, Pub. Date: 8 Aug. 2020
One of the main goals of customer relationship management is to reduce or eliminate “customer churn”, i.e. loss of existing customers. This paper introduces a prototype algorithm to estimate a continuously updated indicator of the probability of an existing customer to cease purchasing from a subscription commerce business. The investigation is focused on the case of repeat consumers of subscription commerce products which require regular replacement or replenishment. The motivation is to help marketers to make targeted proactive retention actions by categorizing regular customers into groups of similar estimated churn risk. The proposed algorithm re-computes the probability of churn for each customer at regular intervals using past purchase transaction data and incorporating subscription-based business logic. We describe the detailed process from data collection and feature engineering to the algorithm’s design. We also present evaluation results of the algorithm’s performance based on a pilot test that took place on a consumables e-commerce business. The results suggest a significant capability of the proposed algorithm in capturing the purchasing intentions of repeat customers, regardless of the risk group they belong to.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals