Work place: Research & Development Department, Apifon S.A., Thessaloniki, 570 01, Greece
E-mail: c.argyriou@apifon.com
Website:
Research Interests: Computational Learning Theory, Natural Language Processing, Information Systems, Data Structures and Algorithms
Biography
Charalampos Argyriou obtained his BSc. in Applied Informatics from the University of Macedonia, Thessaloniki, Greece. Currently, he is working as a Research and Development engineer in Apifon, Greece. His main research interests include, amongst others, machine learning, data mining, natural language comprehension and information retrieval, especially in the field of customer experience management.
By Alexandros Deligiannis Charalampos Argyriou
DOI: https://doi.org/10.5815/ijieeb.2020.04.01, Pub. Date: 8 Aug. 2020
One of the main goals of customer relationship management is to reduce or eliminate “customer churn”, i.e. loss of existing customers. This paper introduces a prototype algorithm to estimate a continuously updated indicator of the probability of an existing customer to cease purchasing from a subscription commerce business. The investigation is focused on the case of repeat consumers of subscription commerce products which require regular replacement or replenishment. The motivation is to help marketers to make targeted proactive retention actions by categorizing regular customers into groups of similar estimated churn risk. The proposed algorithm re-computes the probability of churn for each customer at regular intervals using past purchase transaction data and incorporating subscription-based business logic. We describe the detailed process from data collection and feature engineering to the algorithm’s design. We also present evaluation results of the algorithm’s performance based on a pilot test that took place on a consumables e-commerce business. The results suggest a significant capability of the proposed algorithm in capturing the purchasing intentions of repeat customers, regardless of the risk group they belong to.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals