ISSN: 2074-9023 (Print)
ISSN: 2074-9031 (Online)
DOI: https://doi.org/10.5815/ijieeb
Website: https://www.mecs-press.org/ijieeb
Published By: MECS Press
Frequency: 6 issues per year
Number(s) Available: 84
IJIEEB is committed to bridge the theory and practice of information engineering and electronic business. From innovative ideas to specific algorithms and full system implementations, IJIEEB publishes original, peer-reviewed, and high quality articles in the areas of information engineering and electronic business. IJIEEB is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of information engineering and electronic business applications.
IJIEEB has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, VINITI, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..
IJIEEB Vol. 17, No. 1, Feb. 2025
REGULAR PAPERS
In today's, dynamic business environment and complexity of its operations make the need for modeling Business Processes (BP) is a very critical. Modeling BP is a very important task for improving BP and achieving business needs and goals. BP modeling techniques are necessary for making BP more understandable and easily maintainable which lead to successful Business Process Management (BPM). There many types of modeling techniques for expressing and modeling business process. However, each one has its own characteristics and not all modeling techniques are suitable to all parts of the process. Therefore, it is critical to determine the right and suitable modeling technique. The problem of evaluating BP modeling techniques has been addressed by many researches. However, there is need to handle uncertainty and take into account costs and benefits of BP modeling techniques during the evaluation process. This work aims to introduce different types of BP modeling techniques and present different views of characteristics, features and quality criteria of BPmodeling techniques that can help the modeler during the evaluation process. Also, this work aims to adapt and introduce neutrosophic framework to handle uncertainty and remove confusion during evaluating and determining the BP modeling suitable technique. Moreover, the proposed framework utilizes the neutrosophic benefits and costs method with simple way to improve its use and to balance between benefits and costs during the evaluation process. The proposed framework is applied to a real world case study and the results concluded that the proposed framework can be adopted by business organizations and institutes that need for determining the suitable BP modeling technique to improve their business processes. Also, the results concluded that the utilization of proposed framework can be helpful for handling uncertainty during the evaluation process.
[...] Read more.The sudden surge of digitalization escalates the challenges faced by traditional tax systems to detect and combat tax evasion, and it is a pivotal concern for the smooth functioning and sustainable development of any nation. The paradigm shift offered by the emergence of new-age technologies presents unprecedented opportunities to tap their potential for administering effective tax systems. In our paper, we provide a systematic scientometric analysis of existing literature to analyze four focal new-age technologies in combating tax evasion. We also propose a novel holistic framework to understand the intricacies of this multifaceted landscape of tax evasion from technological, ethical, legal, social, and economic (TELSE) perspectives. The research methodology gives a quantitative scientific mapping to analyze research publications from Web of Science and Scopus databases using Biblioshiny. A total of 117 documents were examined, spanning over the last decade (2014-2024). The research findings highlight considerable traction regarding the number of publications from the two most populated countries in the world. The analysis of the most frequent keywords yields an increasing trend towards the adoption of other new-age technologies as well and depicts different factors that affect tax evasion, which is in line with varied laws and regulations across countries. The interdisciplinary research efforts need to be aligned to tap the full potential of these technologies and to develop effective intelligent taxation systems that are fair, accountable, and explainable.
[...] Read more.This research endeavors to provide a thorough and insightful analysis of Internet of Things (IoT) tools within the context of smart homes. As the IoT continues to revolutionize the domestic landscape, understanding the integration, functionality, and user experience of these tools becomes paramount. The study surveys and categorizes prevalent IoT tools, encompassing sensors, processors, actuators, and databases. Integration capabilities are scrutinized, emphasizing interoperability and compatibility to ascertain the seamless incorporation of diverse IoT tools. Functional roles and contributions of each tool are dissected to illuminate their impact on automation, inter-connectivity, and overall control mechanisms in smart homes. The research extends its gaze to the user experience, exploring factors such as ease of use, reliability, and customization options, shaping the holistic perspective of IoT tools’ impact on residents. Realworld implementations and case studies provide tangible insights into practical applications, while surveys and interviews capture user perspectives, forming a comprehensive view of the challenges and limitations associated with these tools. This study contributes valuable insights for informed decision-making, empowering both users and developers to navigate the evolving landscape of IoT tools within the realm of smart homes.
[...] Read more.This research presents a framework that integrates no-code and low-code approaches with AI-driven Python modules for data analysis and visualization, embedded within Jakarta Faces web applications through TCP socket communication. The framework addresses the challenge of enabling non-technical users to perform complex data analysis tasks without requiring extensive programming knowledge. By leveraging Python’s powerful data libraries, the system automates code generation based on user input, offering a seamless environment for data-driven decision-making. The proposed framework demonstrates significant benefits in democratizing access to AI tools, improving development efficiency, and fostering a user-friendly interface for real-time data analysis and visualization. Rigorous testing of the prototype indicates enhanced usability, scalability for moderate-sized datasets, and practical applications across multiple industries, including healthcare and education. This research contributes to the growing body of work on no-code and low-code platforms by offering a novel integration of Python-based data analysis into Java-based web environments, laying the groundwork for more accessible and scalable AI-driven solutions in web development.
[...] Read more.Healthcare IoT seeks to use technology to better patient care, optimize operational efficiency, and provide remote monitoring and management of health issues. Resource management is crucial in the context of Health Internet of Things (HIoT) since it enhances the performance of healthcare services. This research paper proposes a resource management model in healthcare Internet of Things (IoT) by using deep learning and bio-inspired algorithms. A deep learning model LSTM model is used to resource failure prediction and bio-inspired algorithms are used for resource allocation and load balancing. An accurate prediction of resource utilization and effective resource management algorithm will improve the overall performance of IoT services for Health care application. The proposed approach incorporates deep learning methods to identify and anticipate anomalies, enabling the proactive identification of future problems or resource failures and resource utilization. In addition, bio-inspired algorithms are used to dynamically distribute resources and optimize system performance in real-time. The efficacy of the proposed fault-tolerant method is proved by extensive simulations and performance tests. The experiment results show the improvement in performance parameters as compared to state-of-the-art resource management models
[...] Read more.During the implementation of the work on the creation of the system of tonality recognition and text categorization in the news, a study of the subject area was conducted, which allowed the understanding of the processes of text analysis in the mass media to be enriched. The necessary data for further processing was found. The work resulted from a program that consists of an information parser, a data analyser and cleaner, a Large Language Models model, a neural network, and a database with vectorized data. These components were integrated into the user interface and implemented as a program window. The program can analyse news texts, determining their tone and categories. At the same time, it provides the user with a convenient interface for entering text and receiving analysis results. Therefore, the created system is a powerful tool for automated analysis of textual data in mass media, which can be used for various purposes, including monitoring the news space, analysis of public opinion, and others. Also, the developed information technology successfully meets the set tasks aimed at tonality analysis and categorization of news. It effectively solves the task of collecting, analysing and classifying news materials, which allows users to receive operational and objective information. Its architecture and functionality allow for easy changes and additions in the
future, making it a flexible and adaptable tool for news analytics and decision-making in various business sectors.
Accurate stock price prediction is crucial for financial markets, where investors and analysts forecast future prices to support informed decision-making. In this study, various methods for integrating two advanced time series prediction models, Gated Recurrent Unit (GRU) and Neural Basis Expansion Analysis Time Series Forecasting (N-BEATS), are explored to enhance stock price prediction accuracy. GRU is recognized for its ability to capture temporal dependencies in sequential data, while N-BEATS is known for handling complex trends and seasonality components. Several integration techniques, including feature fusion, residual learning, Ensemble learning and hybrid modeling, are proposed to leverage the strengths of both models and improve forecasting performance. These methods are evaluated on datasets of ten stocks from the S&P 500, with some exhibiting strong seasonal or cyclic patterns and others lacking such characteristics. Results demonstrate that the integrated models consistently outperform individual models. Feature selection, including the integration of technical indicators, is employed during data processing to further improve prediction accuracy.
[...] Read more.This study aims to develop a web-based parking lot management system using multi-paradigm programming languages. This application is designed to help parking lot owners in monitoring the ins and outs of the parking spaces including the income they generated from it. The researchers used multi-paradigm programming languages where more than one programming paradigm was employed. This allows them to use the most suitable programming style and associated language constructs to build the system. Specifically, the researchers made use of the following languages in creating the system: HTML5, CSS3, JavaScript, PHP, MySQL, and Flutter. The study utilized developmental research methods in which the product-development process is analyzed and described, and the final product is evaluated. As a result, the creation of the system has been successful.
[...] Read more.Nowadays, Diabetes is one of the most common and severe diseases in Bangladesh as well as all over the world. It is not only harmful to the blood but also causes different kinds of diseases like blindness, renal disease, kidney problem, heart diseases etc. that causes a lot of death per year. So, it badly needs to develop a system that can effectively diagnose the diabetes patients using medical details. We propose a strategy for the diagnosis of diabetes using deep neural network by training its attributes in five and ten-fold cross-validation fashion. The Pima Indian Diabetes (PID) data set is retrieved from the UCI machine learning repository database. The results on PID dataset demonstrate that deep learning approach design an auspicious system for the prediction of diabetes with prediction accuracy of 98.35%, F1 score of 98, and MCC of 97 for five-fold cross-validation. Additionally, accuracy of 97.11%, sensitivity of 96.25%, and specificity of 98.80% are obtained for ten-fold cross-validation. The experimental results exhibit that the proposed system provides promising results in case of five-fold cross-validation.
[...] Read more.An Enterprise Resource Planning (ERP) system is a software application that serves as a centralized platform to streamline and automate organizational functions and share real-time data, facilitating efficient communication and collaboration. It provides an all-inclusive approach to managing and optimizing business processes, boosting efficiency, fostering cooperation, and giving an overall picture of how the organization is operating. However, the traditional centralized databases in ERP systems pose security concerns. Blockchain Technology can be an appealing alternative as it comes with immutable and decentralized data as well as enhanced security. This study focuses on two methods of securing data management in ERP systems: Organizing the distributed information using The Ralph Kimball data model and optimizing an individual block using Database Sharding. This study does an extensive examination to determine the effectiveness of both suggested strategies, comprising a detailed evaluation that highlights the benefits and limitations of both techniques. This paper intends to patch the security holes in ERP systems to safeguard sensitive data and mitigate risks.
[...] Read more.The advent of Web 2.0 has led to an increase in the amount of sentimental content available in the Web. Such content is often found in social media web sites in the form of movie or product reviews, user comments, testimonials, messages in discussion forums etc. Timely discovery of the sentimental or opinionated web content has a number of advantages, the most important of all being monetization. Understanding of the sentiments of human masses towards different entities and products enables better services for contextual advertisements, recommendation systems and analysis of market trends. The focus of our project is sentiment focussed web crawling framework to facilitate the quick discovery of sentimental contents of movie reviews and hotel reviews and analysis of the same. We use statistical methods to capture elements of subjective style and the sentence polarity. The paper elaborately discusses two supervised machine learning algorithms: K-Nearest Neighbour(K-NN) and Naïve Bayes‘ and compares their overall accuracy, precisions as well as recall values. It was seen that in case of movie reviews Naïve Bayes‘ gave far better results than K-NN but for hotel reviews these algorithms gave lesser, almost same accuracies.
[...] Read more.Quantitative methods help farmers plan and make decisions. An apt example of these methods is the linear programming (LP) model. These methods acknowledge the importance of economizing on available resources among them being water supply, labor, and fertilizers. It is through this economizing that farmers maximize their profit. The significance of linear programming is to provide a solution to the existing real-world problems through the evaluation of existing resources and the provision of relevant solutions. This research studies various LP applications including feed mix, crop pattern and rotation plan, irrigation water, and product transformation; that have the main role to enhance various facets of the agriculture sector. The paper will be a review that will probe into the applications of the LP model and it will also highlight the various tools that are central to analyzing LP model results. The review will culminate in a discussion on the different approaches that help optimize agricultural solutions.
[...] Read more.The present study bridges the gap between the two intersecting domains, data science and supply chain management. The data can be analyzed for inventory management, forecasting and prediction, which is in the form of reports, queries and forecasts. Because of the price, weather patterns, economic volatility and complex nature of business, the forecasts may not be accurate. This has resulted in the growth of Supply chain analytics. It is the application of qualitative and quantitative methods to solve relevant problems and to predict the outcomes by considering quality of data. The issues like increased collaboration between companies, customers, retailers and governmental organizations, companies are adopting Big Data solutions. Big Data applications can be linked for Supply Chain Management across the fields like procurement, transportation, warehouse operations, marketing and also for smart logistics. As supply chain networks becoming vast, more complex and driven by demands for more exacting service levels, the type of data that is managed and analyzed also becomes more complex. The present work aims at providing an overview of adoption of capabilities of Data Analytics as part of a “next generation” architecture by developing a linear regression model on a sales-data. The paper also covers the survey of how big data techniques can be used for storage, processing, managing, interpretation and visualization of data in the field of Supply chain.
[...] Read more.The rapid growth in Information & Communication Technology (ICT), and the power of Internet has strongly impacted the business and service delivery models of today’s global environment. E-Hospital Management Systems provide the benefits of streamlined operations, enhanced administration & control, superior patient care, strict cost control and improved profitability. Globally accepted health care systems need to comply with Healthcare Insurance Portability and Accountability Act (HIPAA) standards of the US and that has become the norm of the Healthcare industry when it comes to medical records management and patient information privacy. The study is focused on understanding the performance indicators of Hospital information systems (HIS), summarizing the latest commonly agreed standards and protocols like Health Level Seven (HL7) standards for mutual message exchange, HIS components, etc… The study is qualitative and descriptive in nature and most of the data is based on secondary sources of survey data. To arrive at a conclusive idea of the larger picture on E- Hospital Management and Hospital information systems, existing survey data and specific successful case studies of HIS are considered in the study. With so many customized versions of E – hospital management solutions (E – HMS) and Hospital Information systems (HIS) available in the market, a generic module wise version of E – Hospital management system is charted out to give a clear understanding for researchers and industry experts. From the specific successful case studies analyzed in the study, the success factors and challenges faced in successful E-HMS implementation are highlighted. Some of the mandatory standards like HIPAA are discussed in detail for clarity on Healthcare system implementation requirements.
[...] Read more.Registration of new students’ academic information is essential for every educational institute to continue their education at every semester level and go through their whole student life. And this registration information is used when they do their form fill up of consecutive semesters. Nowadays, almost all educational institutes are using paper based registration and form fill up systems which is prone to many human errors and very time consuming for both students, teachers as well as other related administrative bodies. In this paper, we developed a web based application for academic purposes to control and save student registration and form fill up data that will be helpful for students, teachers and admin authority to make the process easier, less time consuming and error free. There are four main types of users who can use this system: student, department authority, students’ hall authority and administrator. The student can submit their registration and form fill up information by using a web form. Moreover, he/she can download their admit card and registration form after the approval of the concerned authority. The students also can be able to do other module activities. The hall and department authority can use the system to approve the students' registration, semester examination form and to provide the students' attendance data. In addition, the department and hall authority has a choice to see all students’ academic information. Moreover, the system administrator controls the system by managing (add, delete, update) student, hall and department authority, exam or registration date, subjects of a particular semester, notice board of the institute, module and programme data. The administrator can also add and remove the running and passed student data. The students also can pay their semester fees by using an online banking system.
[...] Read more.Knowledge management is recognized as an important weapon for sustaining competitive advantage and improving performance. The evaluation of knowledge management (KM) performance has become increasingly important since it provides the reference for directing the organizations to enhance their performance and competitiveness. This paper provides an understanding of factors that involved in implementing knowledge management concept to enhance organizational performance. Also, it provides an assessment tool that helps organizations to assess their knowledge management capabilities and identify the possible existing gaps in their knowledge management systems and suggest the possible ways to enhance organizational performance. The results show that all elements of knowledge management capabilities have a positive significant relationship with all measures of the performance at 1% level of significant; it means that there is a great correlation between knowledge management capabilities and organizational performance
[...] Read more.E-commerce has been predicted to be a new driver of economic growth for developing countries. The SME sector plays a significant role in its contribution to the national economy in terms of the wealth created and the number of people employed. Small and Medium Enterprises (SMEs) in Egypt represent the greatest share of the productive units of the Egyptian economy and the current national policy directions address ways and means of developing the capacities of SMEs. Many factors could be responsible for the low usage of e-commerce among the SMEs in Egypt. In order to determine the factors that promote the adoption of e-commerce, SMEs adopters and non-adopters of e-commerce were asked to indicate the factors inhibiting the adoption of e-commerce. The results show that technical barriers are the most important barriers followed by legal and regulatory barriers, whereas lack of Internet security is the highest barrier that inhibit the implementation of e-commerce in SMEs in Egypt followed by limited use of Internet banking and web portals by SMEs. Also, findings implied that more efforts are needed to help and encourage SMEs in Egypt to speed up e-commerce adoption, particularly the more advanced applications.
[...] Read more.This study aims to develop a web-based parking lot management system using multi-paradigm programming languages. This application is designed to help parking lot owners in monitoring the ins and outs of the parking spaces including the income they generated from it. The researchers used multi-paradigm programming languages where more than one programming paradigm was employed. This allows them to use the most suitable programming style and associated language constructs to build the system. Specifically, the researchers made use of the following languages in creating the system: HTML5, CSS3, JavaScript, PHP, MySQL, and Flutter. The study utilized developmental research methods in which the product-development process is analyzed and described, and the final product is evaluated. As a result, the creation of the system has been successful.
[...] Read more.Registration of new students’ academic information is essential for every educational institute to continue their education at every semester level and go through their whole student life. And this registration information is used when they do their form fill up of consecutive semesters. Nowadays, almost all educational institutes are using paper based registration and form fill up systems which is prone to many human errors and very time consuming for both students, teachers as well as other related administrative bodies. In this paper, we developed a web based application for academic purposes to control and save student registration and form fill up data that will be helpful for students, teachers and admin authority to make the process easier, less time consuming and error free. There are four main types of users who can use this system: student, department authority, students’ hall authority and administrator. The student can submit their registration and form fill up information by using a web form. Moreover, he/she can download their admit card and registration form after the approval of the concerned authority. The students also can be able to do other module activities. The hall and department authority can use the system to approve the students' registration, semester examination form and to provide the students' attendance data. In addition, the department and hall authority has a choice to see all students’ academic information. Moreover, the system administrator controls the system by managing (add, delete, update) student, hall and department authority, exam or registration date, subjects of a particular semester, notice board of the institute, module and programme data. The administrator can also add and remove the running and passed student data. The students also can pay their semester fees by using an online banking system.
[...] Read more.Quantitative methods help farmers plan and make decisions. An apt example of these methods is the linear programming (LP) model. These methods acknowledge the importance of economizing on available resources among them being water supply, labor, and fertilizers. It is through this economizing that farmers maximize their profit. The significance of linear programming is to provide a solution to the existing real-world problems through the evaluation of existing resources and the provision of relevant solutions. This research studies various LP applications including feed mix, crop pattern and rotation plan, irrigation water, and product transformation; that have the main role to enhance various facets of the agriculture sector. The paper will be a review that will probe into the applications of the LP model and it will also highlight the various tools that are central to analyzing LP model results. The review will culminate in a discussion on the different approaches that help optimize agricultural solutions.
[...] Read more.Employee Performance Assessment is a part of the Decision Support System. One of the decision support system methods that are most used in performance assessment is Simple Additive Weighting (SAW). In the SAW method, each criterion has a weight value to show the interest level. The determination of the criteria on the SAW method is subjective and the final result is on the ranked system and creates many problems. The study utilizes the Weighted Performance Indicators (WPI) method to solve the problems in the SAW method. The criterion is determined based on the respondent's opinion so that it will be more realistic to achieve the target. The population of the study is the employee of Indo Global Mandiri University which reach 30 persons. WPI method consists of 9 steps. The research result is shown that 4 employees has a performance below MSV and 36 employee has above MSV. The general value of the employee performance value = is 0.69. It shows that the performance of the employee at Indo Global Mandiri University is good enough. However, it needs to be increased, so that the target could be achieved. WPI method is easy to implement, it is not just limited to the employee performance assessment only, but it could be implemented for the other performance assessment, for example, human resource performance, finance, company, industry, system, etc.
[...] Read more.Chatbots are a technological leap in conversational services, generating messages to users either following a set of rules to respond based on recognized patterns or training themselves from previous data or conversations. The primary goal is to enable a device to communicate with a user upon receiving natural language user requests using artificial intelligence and machine learning to generate automated responses. Technology is progressively catering to the questions, both in academic and business contexts, such as situations that require agents to investigate the cause of customer dissatisfaction or to recommend products and services. Significance of this research is to reduce the human dependency and improving customer support by providing close to human natural responses using pattern matching and deep learning on the custom-made data. The main objective of this work is to (a) study the existing literature on cutting-edge technologies in chatbot development in terms of research trends, legacy components, techniques, datasets, and domains specifically in e-commerce and (b) to develop a product that fill some of the gaps/missing functionality identified in current frameworks. We have achieved the following, (a) generated small yet generic dataset, which can be used for all types of products, (b) the intents are identified accurately by the bot using deep learning, whenever a user query.
[...] Read more.COVID-19 pandemic has changed the lifestyle of all aspects of life. These circumstances have created new patterns in lifestyle that people had to deal with. As such, full and direct dependence on the use of the unsafe Internet network in running all aspects of life. As example, many organizations started officially working through the Internet, students moved to e-education, online shopping increased, and more. These conditions have created a fertile environment for cybercriminals to grow their activity and exploit the pressures that affected human psychology to increase their attack success. The purpose of this paper is to analyze the data collected from global online fraud and cybersecurity service companies to demonstrate on how cybercrimes increased during the COVID-19 epidemic. The significance and value of this research is to highlight by evident on how criminals exploit crisis, and for the need to develop strategies and to enhance user awareness for better detection and prevention of future cybercrimes.
[...] Read more.Samarinda village is a village that is predominantly working as a farmer and has a wide range of agricultural products, in addition to the abundance of agricultural products there is a problem of marketing of agricultural products that do not have access to sell their agricultural products. Authors conducted research in order to increase sales and expand marketing in the Village Samarinda through sales system-based Business to the Business and method development using the Research and Development. The results obtained in the form of a web site that can be accessed to serve online sales transaction so that it can increase sales in the village Samarinda.
[...] Read more.Machine Learning is seeing its growth more rapidly in this decade. Many applications and algorithms evolve in Machine Learning day to day. One such application found in journals is house price prediction. House prices are increasing every year which has necessitated the modeling of house price prediction. These models constructed, help the customers to purchase a house suitable for their need. Proposed work makes use of the attributes or features of the houses such as number of bedrooms available in the house, age of the house, travelling facility from the location, school facility available nearby the houses and Shopping malls available nearby the house location. House availability based on desired features of the house and house price prediction are modeled in the proposed work and the model is constructed for a small town in West Godavari district of Andhrapradesh. The work involves decision tree classification, decision tree regression and multiple linear regression and is implemented using Scikit-Learn Machine Learning Tool.
[...] Read more.Widya Collection Store is a business that provides sports clothing, as well as one of the producers in the Samarinda area. Sales management is still not optimal because it still uses paper notes and is still being written which makes it easy for errors to occur in writing prices, quantities of goods and total prices so that it takes a long time to process transactions, both from payment in full or receivables. In addition, managing stock of goods is also more difficult because it is not recorded in the database. Therefore, a Sales Management application was made at the Web-Based Widya Collection Store to process item data, sales transactions, make complete notes and reports and make the transaction process faster. The long-term goal to be achieved is that the stock management process has been recorded in order to know the stock that must be ordered from the supplier. In addition, to simplify and expedite activities in searching for sales transaction data if one day it is needed. In this study, the method used to build a Sales Management Application at a Web-Based Widya Collection Store is the System Development Life Cycle (SDLC) development stage which consists of needs analysis, system design, and implementation.
[...] Read more.The present study bridges the gap between the two intersecting domains, data science and supply chain management. The data can be analyzed for inventory management, forecasting and prediction, which is in the form of reports, queries and forecasts. Because of the price, weather patterns, economic volatility and complex nature of business, the forecasts may not be accurate. This has resulted in the growth of Supply chain analytics. It is the application of qualitative and quantitative methods to solve relevant problems and to predict the outcomes by considering quality of data. The issues like increased collaboration between companies, customers, retailers and governmental organizations, companies are adopting Big Data solutions. Big Data applications can be linked for Supply Chain Management across the fields like procurement, transportation, warehouse operations, marketing and also for smart logistics. As supply chain networks becoming vast, more complex and driven by demands for more exacting service levels, the type of data that is managed and analyzed also becomes more complex. The present work aims at providing an overview of adoption of capabilities of Data Analytics as part of a “next generation” architecture by developing a linear regression model on a sales-data. The paper also covers the survey of how big data techniques can be used for storage, processing, managing, interpretation and visualization of data in the field of Supply chain.
[...] Read more.