Early Detection of Osteoarthritis based on Cartilage Thickness in Knee X-ray Images

Full Text (PDF, 690KB), PP.56-63

Views: 0 Downloads: 0

Author(s)

Shivanand S. Gornale 1,* Pooja U. Patravali 1 P. S. Hiremath 2

1. Department of Computer Science, School of Mathematics and Computing Sciences, Rani Channamma University, Belagavi. Karnataka-India

2. Dept of MCA, KLE Technological University, Hubballi-Karnataka India

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2019.09.06

Received: 11 Jun. 2019 / Revised: 20 Jun. 2019 / Accepted: 1 Jul. 2019 / Published: 8 Sep. 2019

Index Terms

Knee X-ray, Osteoarthritis (OA), ROI, Cartilage area, Decision tree, K-NN

Abstract

Arthritis is a joint disorder featuring inflammation. There are numerous forms of Arthritis. Arthritis essentially causes joint dis-functioning which may further tend to cause deformity and disability. Osteoarthritis (OA) is one form of arthritis which is mostly seen in old age group. A patient suffering from OA needs to visit medical experts where clinical and radiographic examination is carried out. Analysis of bone structures in initial stage is bit complex. So any vague conclusion drawn from the radiographic images may make the treatment faulty and troublesome. Thus to overcome this we have developed an algorithm that computes the cartilage area/thickness using various shape descriptors. The computed descriptors obtained the accuracy of 99.81% for K-nearest neighbour classifier and 95.09% for decision tree classifier. The estimated cartilage thickness is validated by radiographic experts as per KL grading framework which will be helpful to the doctors for quick and appropriate analysis of ailment in the early stage. The results are competitive and promising as reported in the literature.

Cite This Paper

Shivanand S. Gornale, Pooja U. Patravali, Prakash S. Hiremath, "Early Detection of Osteoarthritis based on Cartilage Thickness in Knee X-ray Images", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.11, No.9, pp. 56-63, 2019. DOI: 10.5815/ijigsp.2019.09.06

Reference

[1]Nabil Mehta, Jeffrey Duryea, Gary J. Badger,  Matthew R. Akelman , Morgan H. Jones , MPH, Kurt P. Spindler, and Braden C. Fleming, “Comparison of 2 Radiographic Techniques for Measurement of Tibiofemoral Joint Space Width”, The Orthopaedic Journal of Sports Medicine, 5(9), 2325967117728675, DOI: 10.1177/2325967117728675. 

[2]Lior Shamir, Shari M.Ling,William W.Scott, Angelo Bos, Nikita Orlov, Tomasz Macura, D.Mark, Luigi Ferrucci, Ilya G.Goldberg “Knee X-ray Image Analysis Method for Automated Detection of Osteoarthritis”, IEEE Transactions on Biomedical Engineering, February 2009, Volume 56, No.2, DOI: 10.1109/TBME.2008.2006025, pp.407-415. 

[3]Heidi L. Oksendahl, Nigel Gomez, Colleen S. Thomas, Gary Badger, Michael J. Hulstyn, Paul D. Fadale, and Braden C. Fleming, “Digital Radiographic Assessment of Tibiofemoral Joint Space Width: A Variance Component Analysis”, J Knee Surg. 2009 Jul; 22(3): PP:205–212, PMID: 19634723. 

[4]J Christopher Buckland-Wright, Diana G Macfarlane, John A Lynch, M Kris Jasani, Charles R Bradshaw, “Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macro-radiographic investigation”, Annals of the Rheumatic Diseases 1995; 54: PP: 263-268.

[5]K.R.Ananth, Dr.S.Pannirselvam “A Geodesic Active Contour Level Set Method for Image Segmentation”, I.J. Image, Graphics and Signal Processing (IJIGSP), MECS Publisher, 2012, Volume 4, No.5, June 2012, ISSN: 2074-9074 (Print), ISSN: 2074-9082(Online), DOI: 10.5815/ijigsp.2012.05.04, pp.31-37. 

[6]Jukka Hirvasniemi, Jaakko Niinimaki, Jerome Thevenot, Simo Saarakkala, “Bone Density and Texture from Minimally Post-Processed Knee Radiographs in Subjects with Knee Osteoarthritis”, Annals of Biomedical Engineering, 2019 May, 47(5):1181-1190. Doi: 10.1007/s10439-019-02227-y. Epub 2019 Feb 14. 

[7]S .S Gornale, Abhijit Patil and Mallikarjun Hangarge and R Pardesi. (2019) Automatic Human Gender Identification Using Palmprint. In: Luhach A., Hawari K., Mihai I., Hsiung PA., Mishra R. (eds) Smart Computational Strategies: Theoretical and Practical Aspects. Springer, Singapore. ISBN: 978-981-13-6295-8, pp.: 49-58, 22 March 2019.DOI: https://doi.org/10.1007/978-981-13-6295-8_5.

[8]V. Caselles, R. Kimmel, G. Sapiro, “Geodesic active contours”, International Journal on Computer Vision, July 1995, Volume 22, Issue 1, DOI: 10.1023/A: 1007979827043, pp. 61-79. 

[9]Marie-Pierre Hellio Le Graverand, Steve Mazzuca, Jeff Duryea, Alan Brett, “Radiographic grading and measurement of joint space width in osteoarthritis”, Rheumatic diseases clinics of North America, 2009 August; 35(3):PP: 485-502. Doi: 10.1016/j.rdc.2009.08.005.

[10]Shivanand S. Gornale, Pooja U. Patravali, Ramesh R. Manza, “A Survey on Exploration and Classification of Osteoarthritis Using Image Processing Techniques”, International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016  ISSN 2229-5518 ,pp.334-355. 

[11]Shivanand S. Gornale, Pooja U. Patravali, Ramesh R. Manza, “Detection of Osteoarthritis using Knee X-Ray Image Analyses: A Machine Vision Based Approach”, International Journal of Computer Applications (IJCA), ISSN-0975-8887, Volume 145, Number 1, July 2016,pp: 20-26. 

[12]Shivanand S. Gornale, Pooja U. Patravali, Ramesh R. Manza, “Computer Assisted Analysis and Systemization of knee Osteoarthritis using Digital X-ray images”, Proceedings of 2nd International Conference on Cognitive Knowledge Engineering(ICKE), Chapter 42, pp:207-212, ISBN 978-93-86751-04-1, Excel Academy Publishers, Aurangabad, Maharashtra, December 2016. 

[13]Shivanand S. Gornale, Pooja U. Patravali, Kiran S. Marathe, Prakash S. Hiremath," Determination of Osteoarthritis Using Histogram of Oriented Gradients and Multiclass SVM", International Journal of Image, Graphics and Signal Processing (IJIGSP), Vol.9, No.12, pp. 41-49, 2017.DOI: 10.5815/ijigsp.2017.12.05. 

[14]Shivanand S. Gornale, Pooja U. Patravali, Archana M. Uppin, Prakash S. Hiremath, "Study of Segmentation Techniques for Assessment of Osteoarthritis in Knee X-ray Images", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.11, No.2, pp. 48-57, 2019.DOI: 10.5815/ijigsp.2019.02.06. 

[15]Shivanand S. Gornale, Pooja U. Patravali, Prakash S. Hiremath “Identification of Region of Interest for Assessment of Knee Osteoarthritis in Radiographic Images”, International Journal of Medical Engineering and Informatics”, INDERSCIENCE. (Accepted). 

[16]Kruti R, Abhijit Patil, Shivanand Gornale, "Fusion of Features and Synthesis Classifiers for Gender Classification using Fingerprints", International Journal of Computer Science and engineering, Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693. 

[17]Mitisha Narottambhai Patel, Purvi Tandel, “A Survey on Feature Extraction Techniques for Shape based Object Recognition”, International Journal of Computer Applications (0975 – 8887) Volume 137 – No.6, March 2016.

[18]I. Frosio, N. A. Borghese, "Statistical Based Impulsive Noise Removal in Digital Radiography", IEEE Transactions on Medical Imaging, vol. 28, Issue 1, pp. 3-16, 2009, DOI: 10.1109/TMI.2008.922698. 

[19]Nithya R and Santhi B, “Computer Aided Diagnostic System for Mammogram Density Measure and Classification”, Biomedical Research (0970-938X), Volume 28, Issue 6, 2017, pp.2427-2431. 

[20]Kayvan Najarian, Robert Splinter, “Biomedical Signal and Image Processing”, Second Edition ISBN 9781439870334 May 4, 2012 by CRC Press. 

[21]www.cs.uu.nl. 

[22]Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB)", Springer Science and Business Media LLC, 2019.

[23]Abhijit Patil, Kruthi R and Shivanand Gornale, " Analysis of Multi-modal Biometrics System for Gender Classification Using Face, Iris and Fingerprint Images", International Journal of Image, Graphics and Signal Processing (IJIGSP), Vol.11, No.5, pp. 34-43, 2019.DOI: 10.5815/ijigsp.2019.

[24]Shivanand S Gornale, Ashvini K Babaleshwar, Pravin L Yannawar," Detection and Classification of Signage’s from Random Mobile Videos Using Local Binary Patterns", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.10, No.2, pp. 52-59, 2018.DOI: 10.5815/ijigsp.2018.02.06. 

[25]Shivanand S.Gornale, Pooja U. Patravali (2017), “Medical Imaging in Clinical Applications: Algorithmic and Computer based approaches”, Basic Chapter, “Engineering and Technology: Latest Progress”, pp: 65-104, ISBN 978-81- 932850-2-2, Meta Research Press. 

[26]Shivanand S. Gornale, Pooja U. Patravali, Prakash S. Hiremath, “Assessment of Osteoarthritis in Radiographic Images: A Machine Learning Approach”, Cognitive Informatics, Computer Modeling and Cognitive Science, Book Chapter, Elsevier (Accepted).