International Journal of Image, Graphics and Signal Processing (IJIGSP)

IJIGSP Vol. 15, No. 1, Feb. 2023

Cover page and Table of Contents: PDF (size: 662KB)

Table Of Contents

REGULAR PAPERS

Algorithm of Processing Navigation Information in Systems of Quadrotor Motion Control

By Anatoly Tunik Olha Sushchenko Svitlana Ilnytska

DOI: https://doi.org/10.5815/ijigsp.2023.01.01, Pub. Date: 8 Feb. 2023

The article deals with creating an algorithm for processing information in a digital system for quadrotor flight control. The minimization of L2-gain using simple parametric optimization for the synthesis of the control algorithm based on static output feedback is proposed. The kinematical diagram and mathematical description of the linearized quadrotor model are represented. The transformation of the continuous model into a discrete one has been implemented. The new optimization procedure based on digital static output feedback is developed. Expressions for the optimization criterion and penalty function are given. The features of the creating algorithm and processing information are described. The development of the closed-loop control system with an extended model augmented with some essential nonlinearities inherent to the real control plant is implemented. The simulation of the quadrotor guidance in the turbulent atmosphere has been carried out. The simulation results based on the characteristics of the studied quadrotor are represented. These results prove the efficiency of the proposed algorithm for navigation information processing. The obtained results can be useful for signal processing and designing control systems for unmanned aerial vehicles of the wide class.

[...] Read more.
Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning

By A. B. M. Aowlad Hossain Jannatul Kamrun Nisha Fatematuj Johora

DOI: https://doi.org/10.5815/ijigsp.2023.01.02, Pub. Date: 8 Feb. 2023

Ultrasound based breast screening is gaining attention recently especially for dense breast. The technological advancement, cancer awareness, and cost-safety-availability benefits lead rapid rise of breast ultrasound market. The irregular shape, intensity variation, and additional blood vessels of malignant cancer are distinguishable in ultrasound images from the benign phase. However, classification of breast cancer using ultrasound images is a difficult process owing to speckle noise and complex textures of breast. In this paper, a breast cancer classification method is presented using VGG16 model based transfer learning approach. We have used median filter to despeckle the images. The layers for convolution process of the pretrained VGG16 model along with the maxpooling layers have been used as feature extractor and a proposed fully connected two layers deep neural network has been designed as classifier. Adam optimizer is used with learning rate of 0.001 and binary cross-entropy is chosen as the loss function for model optimization. Dropout of hidden layers is used to avoid overfitting. Breast Ultrasound images from two databases (total 897 images) have been combined to train, validate and test the performance and generalization strength of the classifier. Experimental results showed the training accuracy as 98.2% and testing accuracy as 91% for blind testing data with a reduced of computational complexity. Gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions localization effort at the final convolutional layer and found as noteworthy. The outcomes of this work might be useful for the clinical applications of breast cancer diagnosis.

[...] Read more.
Detecting the Third Heart Sound: Separation and Localization from Lung Sound using Intrinsic Time Scale Decomposition

By Sai Bharadwaj B Ch. Sumanth Kumar

DOI: https://doi.org/10.5815/ijigsp.2023.01.03, Pub. Date: 8 Feb. 2023

The extraction of heart sound component from a composite signal of heart and lung is a quite challenging task in phonocardiogram signal analysis the first heart sound (S1) and the second heart sound (S2), produced by the closing of the atrioventricular valves and the closing of the semilunar valves, respectively, are the fundamental sounds of the heart. To accomplish this task a novel framework with intrinsic time scale decomposition (ITD) is designed. The capture of the PCG signal frequently hides the detection of the third heart sound (S3), which is necessary to identify cardiac failures. To separate S3, ITD method is deployed to enable signal decomposition into certain levels. Next, by applying smoothed pseudo-Wigner Ville distribution (SWVD) with reassignment, the location of S3 is detected. The proposed method is performed on 36 combinations consists of 144 cardiac cycles containing S3 obtained from different online databases. In comparison to existing approaches, the proposed work separates the S3 from other heart and lung sounds and the proposed method obtained the detection accuracy of S3 as 95.4%, which proves the superiority with other methods.

[...] Read more.
A Model based on Deep Learning for COVID-19 X-rays Classification

By Eman I. Abd El-Latif Nour Eldeen Khalifa

DOI: https://doi.org/10.5815/ijigsp.2023.01.04, Pub. Date: 8 Feb. 2023

Throughout the COVID-19 pandemic in 2019 and until now, patients overrun hospitals and health care emergency units to check up on their health status. The health care systems were burdened by the increased number of patients and there was a need to speed up the diagnoses process of detecting this disease by using computer algorithms. In this paper, an integrated model based on deep and machine learning for covid-19 x-rays classification will be presented. The integration is built-up open two phases. The first phase is features extraction using deep transfer models such as Alexnet, Resnet18, VGG16, and VGG19. The second phase is the classification using machine learning algorithms such as Support Vector Machine (SVM), Decision Trees, and Ensemble algorithm. The dataset selected consists of three classes (COVID-19, Viral pneumonia, and Normal) class and the dataset is available online under the name COVID-19 Radiography database. More than 30 experiments are conducted to select the optimal integration between machine and deep learning models. The integration of VGG19 and SVM achieved the highest accuracy possible with 98.61%. The performance indicators such as Recall, Precision, and F1 Score support this finding. The proposed model consumes less time and resources in the training process if it is compared to deep transfer models. Comparative results are con-ducted at the end of the research, and the proposed model overcomes related works which used the same dataset in terms of testing accuracy.

[...] Read more.
Real-Time Video based Human Suspicious Activity Recognition with Transfer Learning for Deep Learning

By Indhumathi .J Balasubramanian .M Balasaigayathri .B

DOI: https://doi.org/10.5815/ijigsp.2023.01.05, Pub. Date: 8 Feb. 2023

Nowadays, the primary concern of any society is providing safety to an individual. It is very hard to recognize the human behaviour and identify whether it is suspicious or normal. Deep learning approaches paved the way for the development of various machine learning and artificial intelligence. The proposed system detects real-time human activity using a convolutional neural network. The objective of the study is to develop a real-time application for Activity recognition using with and without transfer learning methods. The proposed system considers criminal, suspicious and normal categories of activities. Differentiate suspicious behaviour videos are collected from different peoples(men/women). This proposed system is used to detect suspicious activities of a person. The novel 2D-CNN, pre-trained VGG-16 and ResNet50 is trained on video frames of human activities such as normal and suspicious behaviour. Similarly, the transfer learning in VGG16 and ResNet50 is trained using human suspicious activity datasets. The results show that the novel 2D-CNN, VGG16, and ResNet50 without transfer learning achieve accuracy of 98.96%, 97.84%, and 99.03%, respectively. In Kaggle/real-time video, the proposed system employing 2D-CNN outperforms the pre-trained model VGG16. The trained model is used to classify the activity in the real-time captured video. The performance obtained on ResNet50 with transfer learning accuracy of 99.18% is higher than VGG16 transfer learning accuracy of 98.36%. 

[...] Read more.
The Performance Analysis of Digital Filters and ANN in De-noising of Speech and Biomedical Signal

By Humayra Ferdous Sarwar Jahan Fahima Tabassum Md. Imdadul Islam

DOI: https://doi.org/10.5815/ijigsp.2023.01.06, Pub. Date: 8 Feb. 2023

A huge number of algorithms are found in recent literature to de-noise a signal or enhancement of signal. In this paper we use: static filters, digital adaptive filters, discrete wavelet transform (DWT), backpropagation, Hopfield neural network (NN) and convolutional neural network (CNN) to de-noise both speech and biomedical signals. The relative performance of ten de-noising methods of the paper is measured using signal to noise ratio (SNR) in dB shown in tabular form. The objective of this paper is to select the best algorithm in de-noising of speech and biomedical signals separately. In this paper we experimentally found that, the backpropagation NN is the best for de-noising of biomedical signal and CNN is found as the best for de-noising of speech signal, where the processing time of CNN is found three times higher than that of backpropagation.

[...] Read more.
Retinal Image Segmentation for Diabetic Retinopathy Detection using U-Net Architecture

By Swapnil V. Deshmukh Apash Roy Pratik Agrawal

DOI: https://doi.org/10.5815/ijigsp.2023.01.07, Pub. Date: 8 Feb. 2023

Diabetic retinopathy is one of the most serious eye diseases and can lead to permanent blindness if not diagnosed early. The main cause of this is diabetes. Not every diabetic will develop diabetic retinopathy, but the risk of developing diabetes is undeniable. This requires the early diagnosis of Diabetic retinopathy. Segmentation is one of the approaches which is useful for detecting the blood vessels in the retinal image. This paper proposed the three models based on a deep learning approach for recognizing blood vessels from retinal images using region-based segmentation techniques. The proposed model consists of four steps preprocessing, Augmentation, Model training, and Performance measure. The augmented retinal images are fed to the three models for training and finally, get the segmented image. The proposed three models are applied on publically available data set of DRIVE, STARE, and HRF. It is observed that more thin blood vessels are segmented on the retinal image in the HRF dataset using model-3. The performance of proposed three models is compare with other state-of-art-methods of blood vessels segmentation of DRIVE, STARE, and HRF datasets.

[...] Read more.