Design of (FPID) controller for Automatic Voltage Regulator using Differential Evolution Algorithm

Full Text (PDF, 581KB), PP.21-28

Views: 0 Downloads: 0

Author(s)

Nasir Ahmed Alawad 1,* Nora Ghani Rahman 1

1. Al-Mustansiriyah University/College of Engineering/ Computer Engineering Department, Baghdad, 10001, Iraq

* Corresponding author.

DOI: https://doi.org/10.5815/ijmecs.2019.12.03

Received: 25 Sep. 2019 / Revised: 10 Oct. 2019 / Accepted: 28 Oct. 2019 / Published: 8 Dec. 2019

Index Terms

Automatic voltage regulator, DE, IWO, SCA, BB algorithms, MATLAB

Abstract

This article presents Differential Evolution (DE) to determine optimum fractional proportional-integral-derivative (FPID) controller parameters for model decrease of an automatic voltage controller (AVR) system. The suggested strategy is a straightforward yet efficient algorithm with balanced capacities for exploration and exploitation to efficiently search for space alternatives to find the best outcome. The algorithm's simplicity offers quick and high-quality tuning of optimum parameters for the FPID controller. A time domain performance index is used to validate the suggested DE-FPID controller. The proposed technique was discovered productive and hearty in improving the transient response of AVR framework contrasted with the PID controllers based - Ziegler-Nichols (ZN), FPID based - Invasive Weed Optimization (IWO),FPID based-Sine-Cosine algorithmn (SCA) tuning strategies.

Cite This Paper

Nasir Ahmed Alawad, Nora Ghani Rahman, " Design of (FPID) controller for Automatic Voltage Regulator using Differential Evolution Algorithm", International Journal of Modern Education and Computer Science(IJMECS), Vol.11, No.12, pp. 21-28, 2019. DOI:10.5815/ijmecs.2019.12.03

Reference

[1]J. T. Machado, A. M. Galhano, J. J. Trujillo, “On development offractional calculus during the last fifty years”, Scientometrics, vol. 98,no. 1, pp. 577–582, 2014. DOI: 10.1007/ s11192-013-1032-6.
[2]I. Podlubny, L. Dorcak, I. Kostial, “On fractional derivatives,fractional-order dynamic systems and PI D controllers”, in Proc.36th Conf. Decision & Control, pp. 4985–4990, 1997.
[3]I. Podlubny, “Fractional-order systems and PI D controllers”, IEEE Trans. Automatic Control, vol. 44, no. 1, pp. 208–214, 1999. DOI:10.1109/9.739144.
[4]B. Boudjehem, D. Boudjehem, “Fractional order controller design for desired response”, in Proc. Inst Mech Eng, Part 1: J Syst Control Eng, vol. 227, no. 2, pp. 243–251, 2013. DOI:10.1177/0959651812456647
[5]P. Shah, S. Agashe, “Design and optimization of fractional PID controller for higher order control system”, Int. Conf. IEEE ICART,pp. 588–592, 2013.
[6]S. Ghasemi, A. Tabesh, J. Askari-Marnani, “Application of fractionalcalculus theory to robust controller design for wind turbine generators”, IEEE Trans. Energy Convers, vol. 29, pp. 780–787,2014. DOI: 10.1109/TEC.2014.2321792.
[7]J. Y. Cao, B. G. Cao, “Design of fractional order controller based onparticle swarm optimization”, International Journal of Control,Automation and Systems, vol. 4, pp. 775–781, 2006.
[8]D.Xue,L.Meng,”Design of optimal fractional-order PID controller using multi-objective GA optimization,”Control and Decision Conference(CCDC);2009 June17-19;Guilin,IEEE;p.3849-3853.
[9]F. Padula, A. Visioli, “Tuning rules for optimal PID and fractional order PID controllers”, Journal of Proc. Cont., vol. 21, no. 1, pp. 69–81, 2011. DOI: 10.1016/j.jprocont. 2010.10.006.
[10]H. Senberber, A. Bagis, “Fractional PID controller design for fractional order systems using ABC algorithm”, in IEEE Proc. of 21stInternational Conference Electronics, Palanga, Lithuania, 2017, pp.1–7. DOI: 10.1109/Electronics.2017.7995218.
[11]H. Eirene , E. Lobo , M. Sau,” Modeling control of automatic voltage regulator with proportional integral derivative “,International Journal of Research in Engineering and Technology, Vol4, Issue9,2015.
[12]K.Eswaramma , G.Surya Kalyan,’ An Automatic Voltage Regulator(AVR) System Control using a P-I-DD Controller’ International Journal of Advance Engineering and Research Development, Volume 4, Issue 6, June -2017.
[13]M. Zamani, M. K. Ghartemani, N. Sadati, and M. Parniani, "Design of a fractional order PID controller for an AVR using particle swarm optimization,” Journal of IFAC, the International Federation of Automatic Control, Control Engineering Practice 17,pp.1380-1387, August 2009.
[14]P. Kundur,” Power system stability and control”, NewYork:McGraw-Hill.1994.
[15]G. Obinata, B. D. O Anderson, Model order reduction for control system design, Springer-Verlag, London, 2001.
[16]A.C. Antoulas, D.C. Sorensen, and S. Gugercin, "A survey of model order reduction method for large scale systems,” Contemporary mathematics, vol. 280, pp. 193-219, 2001.
[17]S. Biradar, S. Saxena, Y. Hote,” Simplified Model Identification of Automatic Voltage Regulator Using Model-Order Reduction”, International Conference on Power and Advanced Control Engineering (ICPACE),2015.
[18]H.Ma,D.Simon,” Evolutionary Computation with Biogeography-based Optimization”,Willey company publisher,jan2017.
[19]A. Nazar , A. Hadidi,” Biogeography Based Optimization Algorithm for Economic Load Dispatch of Power System”, American Journal of Advanced Scientific Research,vol.1,issue.3,p.99-103,2012.
[20]K. T. Chaturvedi, M. Pandit, and L. Srivastava, “Selforganizing hierarchical particle swarm Optimization for nonconvex economic dispatch,” IEEE Trans. Power Syst., vol. 23, no. 3, p. 1079, Aug. 2008.
[21]R. Storn, “Differential Evolution, A Simple and Efficient Heuristic Strategy for Global Optimization over Continuous Spaces”, Journal of Global Optimization, Vol. 11, Dordrecht, pp. 341-359, 1997
[22]M. Strens and A. Moore, “Policy Search using Paired Comparisons”, Journal of Machine Learning Research, Vol. 3, pp. 921-950, 2002.
[23]H.A. Abbass, Ruhul Sarker, and Charles Newton. “PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems”. Proceedings, 2001.
[24]P. Melchior, P. Lanusse, O. Cois, F. Dancla, and A. Oustaloup,“Crone toolbox for matlab: Fractional systems toolbox,” in Tutorial Workshop on” Fractional Calculus Applications in Automatic Control and Robotics”, 41st IEEE CDC’02, 2002, pp. 9–13.
[25]T.Thotakura , P. Krishna Kanth Varma, P.V. Rama Raju,” Invasive Weed Optimization (IWO) Algorithm for Control of Nulls and Sidelobes in a Concentric Circular Antenna Array (CCAA)”, International Journal of Computer Applications,vol.126,no.3,pp.44-49,2015.
[26]B. Hekimoglu,” Sine-cosine algorithm-based optimization for automatic voltage regulator system”, Transactions of the Institute of Measurement and Control,pp.1–11,2018.