Cuckoo Search Algorithm using Lèvy Flight: A Review

Full Text (PDF, 1139KB), PP.10-15

Views: 0 Downloads: 0

Author(s)

Sangita Roy 1,* Sheli Sinha Chaudhuri 2

1. ECE Department, Narula Institute of Technology, WBUT, Agarpara, K olkata, India

2. Electronics & Telecommunication Engineering Department, Jadavpur University, Kolkata, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijmecs.2013.12.02

Received: 1 Aug. 2013 / Revised: 2 Sep. 2013 / Accepted: 26 Oct. 2013 / Published: 8 Dec. 2013

Index Terms

Cuckoo search, Levy Flight, Obligatory brood parasitism, NP-hard problem, Markov Chain, Hill climbing, Heavy-tailed algorithm.

Abstract

Cuckoo Search (CS) is a new met heuristic algorithm. It is being used for solving optimization problem. It was developed in 2009 by Xin- She Yang and Susah Deb. Uniqueness of this algorithm is the obligatory brood parasitism behavior of some cuckoo species along with the Levy Flight behavior of some birds and fruit flies. Cuckoo Hashing to Modified CS have also been discussed in this paper. CS is also validated using some test functions. After that CS performance is compared with those of GAs and PSO. It has been shown that CS is superior with respect to GAs and PSO. At last, the effect of the experimental results are discussed and proposed for future research.

Cite This Paper

Sangita Roy, Sheli Sinha Chaudhuri, "Cuckoo Search Algorithm using Lèvy Flight: A Review", International Journal of Modern Education and Computer Science (IJMECS), vol.5, no.12, pp.10-15, 2013.DOI: 10.5815/ijmecs.2013.12.02

Reference

[1]Civicioglu. P., Besdok. E., A conceptual comparison of Cuckoo-Search, particle search optimisation, differential evolution and artificial bee colony algorithms, Springer Science and Business Media B. V.2011.
[2]Walton S., Hassan O., Morgan K., and Brown M. R., Modified cuckoo search: A new gradient free optimisation algorithm, Chois, Solutions and Fractals, 44, issue 9, pp 710-718(September 2011).
[3]Barthemy P., Bertolotti J., Wiersma D. S., A Levy Flight for light, Nature, 453, 495-498(2008). http://www.google.co.in/imgres?q=levy+distribution&hl=en&sa=X&tbo=d&biw=1360&bih=629&tbm=isch&tbnid=S2sLMB8a2_KFsM:&imgrefurl=http://toshiclark.
xanga.com/726841489/affirmative-action- redux/&docid=v5KrG_1jRGKsiM&imgurl=http://i43.tinypic.com/2216o0.png&w=496&h
=393&ei=zcKpUMupMcSmrAehsoDoAw&zoom=1&iact=rc&dur=327&sig=102399137622272530481&page=1&tbnh=138&tbnw=
164&start=0&ndsp=20&ved=1t:429,r:2,s:0,i:77&tx=110&ty=68.
[4]X.-S. Yan, Harmony Search as a Metaheuristic Algorithm, in Music-Inspired Harmony Search Algorithm: Theory and Applications, Studies in Computational Intelligence,Springer Berlin, vol. 191,pp. 1-44(2009).
[5]http://www.metaheuristic.com/x_algorithm_metaheuristic_optimization.php.
[6]Bonabeau E., Dorigo M., Theraulaz G., Swarm Intelligance: From Natural to Artificial Systems. Oxford University Press, (1999).
[7]Bulm C. and Roli A., Metaheuristics in combinatorial optimization: Overview and conceptural comparison, ACM Comput. Surv, 35,268-308(2003).
[8]Barthelemy P., Bertelotti J., Wiersma D. S., A Lévy flight for light.Nature, 453, 495-498(2008).
[9]Goldberg D. E., Genetic Algorithms in Search, Optimisation and Mechine Learning, Reading. Mass: Addision Wesley (1989).
[10]Kennedy J. and Eberhart R. C.: Particle swarm optimization.Proc. of IEEE International Conference on Neural Networks. Piscataway, NJ. pp. 1942-1948 (1995).
[11]Yang X. S., Nature-Inspired Metaheuristic Algorithms, Luniver Press, (2008).
[12]Yang X. S., Biology-derived algorithms in engineering optimization (Chapter 32), in Handbook of Bioinspired Algorithms and Applications (eds Olarius & Zomaya), Chapman & Hall/ CRC (2005).
[13]Shlesinger M. F., Zaslavsky G. M. and Frisch U. (Eds), Lévy Flights and Related Topics in Physics, Springer, (1995).
[14]Shilane D., Martikainen J., Dudoit S., Ovaska S. J., A general framework for statistical performance comparison of evolutionary computation algorithms, Informational Sciences: an Int. Journal, 178,2870-2879(2008).
[15]Shang Y. W., Qiu Y. H., A note on the extended rosenrbock function, Evolutionary Computation, 14,119-126(2006).
[16]Schoen F., A wide class of test functions for global optimization, J. Global Optimization, 3,133-137, (1993).
[17]Kennedy J., Eberhart R., Shi Y.: Swarm intelligence, Academic Press, (2001).
[18]Payne R. B., Sorenson M. D., and Kiltz K., The Cuckoos, Oxford University Press, (2005).
[19]Reynolds A. M. and Frye M. A. ,Free-flight odor tracking in Drosophilia is consistent with an optimal intermittent scale—free search, PLoS One,2,e354(2007).
[20]Xin-She Yang,Suash Deb,Cuckoo Search via Le’vy Flights. Proc. Of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), India. IEEE Publications, USA.
[21]Shlesinger M. F, Search Research, Nature, 443,281- 282(2006).