IJIGSP Vol. 6, No. 10, 8 Sep. 2014
Cover page and Table of Contents: PDF (size: 817KB)
Full Text (PDF, 817KB), PP.18-28
Views: 0 Downloads: 0
Urban growth analysis, Land use, Land cover, Change detection, Multi-temporal satellite images
In this paper, urban growth of Bangalore region is analyzed and discussed by using multi-temporal and multi-spectral Landsat satellite images. Urban growth analysis helps in understanding the change detection of Bangalore region. The change detection is studied over a period of 39 years and the region of interest covers an area of 2182 km2. The main cause for urban growth is the increase in population. In India, rapid urbanization is witnessed due to an increase in the population, continuous development has affected the existence of natural resources. Therefore observing and monitoring the natural resources (land use) plays an important role. To analyze changed detection, researcher’s use remote sensing data. Continuous use of remote sensing data helps researchers to analyze the change detection. The main objective of this study is to monitor land cover changes of Bangalore district which covers rural and urban regions using multi-temporal and multi-sensor Landsat - multi-spectral scanner (MSS), thematic mapper (TM), Enhanced Thematic mapper plus (ETM+) MSS, TM and ETM+ images captured in the years 1973, 1992, 1999, 2002, 2005, 2008 and 2011. Temporal changes were determined by using maximum likelihood classification method. The classification results contain four land cover classes namely, built-up, vegetation, water and barren land. The results indicate that the region is densely developed which has resulted in decrease of water and vegetation regions. The continuous transformation of barren land to built-up region has affected water and vegetation regions. Generally, from 1973 to 2011 the percentage of urban region has increased from 4.6% to 25.43%, mainly due to urbanization.
Ashoka Vanjare, S.N. Omkar, J.Senthilnath,"Satellite Image Processing for Land Use and Land Cover Mapping", IJIGSP, vol.6, no.10, pp.18-28, 2014. DOI: 10.5815/ijigsp.2014.10.03
[1]Bakr N, Weindorf, D C, Bahnassy, M. H, Marei, S M., & El-badawi M. M. Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data, Applied Geography, 30(4), 592-605.Elsevier Ltd. Doi: 10.1016/j.apgeog.2009.10.008.
[2]Ramachandra T. V and Uttam Kumar Wetlands of Greater Bangalore, India: Automatic Delineation through pattern classifiers, Electronic Green Journal, (26), pp-1-22.
[3]Walkey, J. A. Development of a change detection tool for image analysis, MS thesis. University of Wisconsin-Madison, 1997.
[4]Prasad, A. K., Chai, L., Singh, R. P., and Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters, International Journal of Applied Earth Observation and Geoinformation, 8, 26-33. Doi: 10.1016/j.jag.2005.06.002.
[5]Bhavsar, P. D. Review of remote sensing applications in hydrology and water resources management in India, Advances in Space Research. 4 (11), 193-200, 1984.
[6]Van, W. J. W., Root and R. R. Hyper spectral analysis of multi-temporal Landsat TM data for mapping fuels in Yosemite National Park, Proc. Joint Fire Sci. Conf. and Workshop. Boise, Idaho. June 1999
[7]Zhang, X., Sun, R., Zhang, B. and Tong, Q. Land cover classification of the North China Plain using MODIS EVI time series, ISPRS Journal of Photogrammetry and Remote Sensing. 63, 476–484, 2008.
[8]Verhoest, N., Troch, P. A., De T. F.P. Spatial soil moisture mapping through multi-temporal analysis of ERS-SAR PRI data, 3rd ERS SYMPOSIUM, Florence, 1997.
[9]Ashbindu Singha, Digital change detection techniques using remotely-sensed data, International Journal of Remote Sensing, Volume-10(6), pp 989-1003, 1989.
[10]James r. Anderson, Ernest e. hardy, John t. roach, and Richard e. witmer, a land use and land cover classification system for use with remote sensor data, 1972.
[11]El-Kawya, O. R. A., Rod, J. K., Ismail, H. A., and Suliman A. S, Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data, Applied Geography, 31(2), 483-494. Elsevier Ltd. Doi: 10.1016/j.apgeog.2010.10.012.
[12]Dengsheng Lu, Emilio Moran and Scott Hetrick, Detection of impervious surface change with Multitemporal Landsat images in an urban–rural frontier, ISPRS Journal of Photogrammetry and Remote Sensing, 26 Nov 2010.
[13]Robert A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, third edition.
[14]Gonzalez, R. C. and Woods, R. E, Digital Image Processing, 3E, Prentice Hall, Upper Saddle River, NJ.
[15]Thomas Lille sand, Ralph W. Kiefer and Jonathan Chipman, Remote Sensing and Image Interpretation.
[16]R. O. Duda,P. E. Hart and D. G. Stork, Pattern Classification 2E John Wiley & Sons, 2000.
[17]Ramachandra T. V, & Kumar Uttam, Greater Bangalore: Emerging Urban Heat Island, Urban Ecosystems.
[18]Ethem Alpaydm, Introduction to Machine Learning, MIT Press.
[19]Lu, D., & Weng, Q. (2006), Use of impervious surface in urban land-use classification, Remote Sensing of Environment, 102, 146 - 160. Doi: 10.1016/j.rse.2006.02.010.
[20]Esch, T., Himmler, V., Schorcht, G., Thiel, M., Wehrmann, T., Bachofer, F., Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data, Remote Sensing of Environment, 113, 1678-1690. Doi: 10.1016/j.rse.2009.03.012.
[21]Mallick, J., Kant, Y., and Bharath, B. D, Estimation of land surface temperature over Delhi using Landsat-7 ETM +, 12(3), 131-140.
[22]El-Kawya, O. R. A., Rod, J. K., Ismail, H. A., & Suliman, A. S, Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data, Applied Geography, 31(2), 483-494. Elsevier Ltd. doi: 10.1016/j.apgeog.2010.10.012.
[23]Camps-valls, G., Gómez-chova, L., Munoz-Mari, J., Rojo-álvarez, J. L., Martinez-Ramón, M., (2008), Kernel-Based Framework for Multi-temporal and Multi-source Remote Sensing Data Classification and Change Detection, 46(6), 1822-1835.
[24]Esch, T., Himmler, V., Schorcht, G., Thiel, M., Wehrmann, T., Bachofer, F, Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data, Remote Sensing of Environment, 113, 1678-1690. Doi: 10.1016/j.rse.2009.03.012.
[25]Weber, C., and Puissant, A, Urbanization pressure and modeling of urban growth: example of the Tunis Metropolitan Area. Remote Sensing of Environment, 86, 341 - 352. Doi: 10.1016/S0034-4257(03)00077-4.
[26]Lu, D., Batistella, M., and Moran, E, Multitemporal spectral mixture analysis for Amazonian land-cover change detection Methods, 30(1), pp 87-100.
[27]Avci, M., & Akyurek, Z, A Hierarchical Classification of Landsat-TM Imagery for Land covers Mapping.
[28]Ramachandra T. V. and Uttam Kumar, Greater Bangalore: Emerging Urban Heat Island, Energy and Wetlands Research Group Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, INDIA, http://www.gisdevelopment.net.
[29]Wang, B., Ono, A., and Muramatsu, K, Automated Detection and Removal of Clouds and their Processing”, (2), 453-460.
[30]Tseng, D.-chang, Tseng, H.-ting and Chien, C-Liang, Automatic cloud removal from multi-temporal SPOT images, Applied Mathematics and Computation, 205(2), 584-600. Elsevier Inc. doi: 10.1016/j.amc.2008.05.050.
[31]M.J. Pringle,M. Schmidta and J.S. Muira, Geostatistical interpolation of SLC-off Landsat ETM+ images , ISPRS Journal of Photogrammetry and Remote Sensing ,Volume 64(6), pp 654-664,2009.
[32]Gyanesh Chander, Brian L. Markham and Dennis L. Helder, Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors , Remote Sensing of Environment, Volume 113(5), pp 893-903.
[33]Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., and Macomber, S. A, Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Data Processing, 4257(00).
[34]Kang-tsung Chang, Introduction to Geographic Information Systems.
[35]S. N. Omkar, J. Senthilnath, Dheevatsa Mudigere and M. Manoj Kumar, Crop Classification using Biologically-inspired Techniques with High Resolution Satellite Image, Journal of the Indian Society of Remote Sensing Volume 36(2), 175-182.
[36]Adel Shalaby and Ryutaro Tateishi, Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt, Applied Geography, Volume 27(1), and Pages 28-41, 2007.
[37]Peter Potapov, Svetlana Turubanova, and Matthew C. Hansen, Regional- Scale boreal forest cover and change mapping using Landsat data composites for European Russia, Remote Sensing of Environment, October 2010.
[38]Hugo Carr?o, Paulo Gon?alves and Mário Caetano, Contribution of multispectral and Multitemporal information from MODIS images to land cover classification, Remote Sensing of Environment, Volume 112(3), PP 986-997, 2008.
[39]David P. Roy, Junchang Ju, Philip Lewis, Crystal Schaaf, Feng Gao, Matt Hansen and Erik Lindquist, Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , Remote Sensing of Environment, Volume 112, Issue 6(16) Pages 3112-3130,2008.
[40]J. Senthilnath, S.N. Omkar, V. Mani and T. Karthikeyan, Multi-objective Discrete Particle Swam Optimization for Multi-sensor Image Alignment" IEEE Geoscience and Remote Sensing Letters (GRSL), Vol. 10(5), pp. 1095 - 1099, 2013.
[41]J.Senthilnath, S.N. Omkar, V. Mani, Naveen P Kalro and P.G. Diwakar, Multi-objective genetic algorithm for efficient point matching in multi-sensor satellite image” Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS'12), Munich, Germany, 2012.
[42]J. Senthilnath, S. N. Omkar, V. Mani and T. Karthikeyan, Multi-objective optimization of satellite image registration using discrete particle swarm optimisation Proc. IEEE INDICON'11, Hyderabad, India, 2011.
[43]J. Senthilnath, Shivesh Bajpai, S.N. Omkar, P.G. Diwakar and V. Mani An approach to Multi-temporal MODIS Image analysis using Image classification and segmentation, Advances in Space Research, Vol. 50(9), pp. 1274 - 1287, 2012.
[44]C.S. Arvind, Ashoka Vanjare, S.N. Omkar, J. Senthilnath, V. Mani and P.G. Diwakar, Multi-temporal Satellite Image Analysis Using Unsupervised Techniques, Advances in Computing and Information Technology, (Eds. N. Meghanathan et al.) Advances in Intelligent Systems and Computing, Springer Verlag, Berlin, Germany, vol. 177, pp. 757 – 765, 2013.
[45]J. Senthilnath, Vikram Shenoy H, Ritwik Rajendra, S.N. Omkar, V. Mani and P.G. Diwakar, Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction, Journal of Earth System Science, (Springer-Verlag), Vol. 122(3), pp. 559 - 572, 2013.
[46]J. Senthilnath, S.N. Omkar, V. Mani, Nitin Karnwal and Shreyas P.B, Crop Stage Classification of Hyperspectral Data using Unsupervised Techniques IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (IJSTARS), Vol. 6(2), pp. 861 - 866, 2013.
[47]J. Senthilnath, S.N. Omkar, V. Mani and P.G. Diwakar, Multi-temporal Satellite Imagery for Flood Damage Assessment, Journal of the Indian Institute of Science, Special Issue on imaging and microscopy, Vol. 93(1), pp. 105 - 116, 2013.
[48]J. Senthilnath, S.N. Omkar, V. Mani, Tejovanth N, P.G. Diwakar and Archana Shenoy B, Hierarchical Clustering Algorithm for Land Cover Mapping using Satellite Images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5(3), pp. 762 - 768, 2012.
[49]J. Senthilnath, S.N. Omkar and V. Mani, Clustering using firefly algorithm: performance study Swarm and Evolutionary Computation, Vol. 1(3), pp.164 - 171, 2011.
[50]S.N. Omkar, Sivaranjani V, J. Senthilnath and Suman Mukherjee, Dimensionality Reduction and Classification of Hyperspectral Data, International Journal of Aerospace Innovations, Vol. 2(3), pp. 157 - 163, 2010.
[51]J. Senthilnath, M. Rajeswari and S.N. Omkar, Automatic Road Extraction using High Resolution Satellite Image based on Texture Progressive Analysis and Normalized Cut method, Journal of the Indian Society of Remote Sensing, (Springer-Verlag), Vol. 37(3), pp. 351 - 361, 2009.
[52]S.N. Omkar, J. Senthilnath, Dheevatsa Mudigere and Manoj Kumar M, Crop Classification using Biologically Inspired Techniques with High Resolution Satellite Image, Journal of the Indian Society of Remote Sensing (Springer-Verlag), Vol. 36(2), pp. 172 - 182, 2008.
[53]J. Senthilnath, Ankur raj, S.N. Omkar, V. Mani and Deepak kumar, Quasi-Based Hierarchical Clustering for Land Cover Mapping Using Satellite Images, Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Application Advances in Intelligent Systems and Computing, Springer India, Vol. 202, pp. 53 – 64, 2013.
[54]J. Senthilnath, Vikram Shenoy H, S.N. Omkar and V. Mani, Spectral-spatial MODIS image analysis using Swarm intelligence algorithms and region based segmentation for flood assessment, Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Application (Eds. J.C. Bansal et al.) Advances in Intelligent Systems and Computing, Springer India, Vol. 202, pp. 163 – 174, 2013.
[55]J. Senthilnath, Vipul Das, S.N. Omkar and V. Mani, Clustering using Levy Flight Cuckoo Search Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Application (Eds. J.C. Bansal et al.) Advances in Intelligent Systems and Computing, Springer India, Vol. 202, pp. 65 – 75, 2013.
[56]J. Senthilnath, Shreyas P.B, Ritwik Rajendra, S.N. Omkar, V. Mani and P.G. Diwakar, Multi-Sensor Satellite Image Analysis using Niche Genetic Algorithm for Flood Assessment, Swarm, Evolutionary and Memtic Computing Conference, Springer-Verlag Berlin Heidelberg, LNCS 7677, pp. 49 - 56, Springer, Heidelberg, 2012.
[57]J. Senthilnath, S.N. Omkar, V. Mani and Nitin Karnwal, Hierarchical artificial immune system for crop stage classification, Proc. IEEE INDICON'11, Hyderabad, India, 2011.
[58]J. Senthilnath, S.N. Omkar, V. Mani, Tejovanth N, P.G. Diwakar and Archana Shenoy B, Multi-Spectral Satellite Image Classification using Glowworm Swarm Optimization, Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS'11), Vancouver, Canada, 2011.
[59]M. Rajeswari, K.S. Gurumurthy, S.N. Omkar, J. Senthilnath and L. Pratap Reddy, Automatic Road Extraction using High Resolution Satellite Images based on Level Set and Mean Shift Methods,Proc. IEEE 3rd International Conference on Electronics Computer Technology (ICECT'11), Kanyakumari, India, 2011.