International Journal of Wireless and Microwave Technologies (IJWMT)

ISSN: 2076-1449 (Print)

ISSN: 2076-9539 (Online)

DOI: https://doi.org/10.5815/ijwmt

Website: https://www.mecs-press.org/ijwmt

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 79

(IJWMT) in Google Scholar Citations / h5-index

IJWMT is committed to bridge the theory and practice of wireless and microwave technologies. From innovative ideas to specific algorithms and full system implementations, IJWMT publishes original, peer-reviewed, and high quality articles in the areas of wireless and microwave technologies. IJWMT is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of wireless and microwave technology applications.

 

IJWMT has been abstracted or indexed by several world class databases: Google Scholar, Microsoft Academic Search, Baidu Wenku, Open Access Articles, CNKI, GetInfo, WorldCat, OneSearch, ZB MED, CrossRef, JournalTOCs, etc..

Latest Issue
Most Viewed
Most Downloaded

IJWMT Vol. 15, No. 2, Apr. 2025

REGULAR PAPERS

Enhancing Sensor Node Energy Efficiency in Wireless Sensor Networks through an Adaptable Power Allocation Framework

By M. S. Muthukkumar C. M. Arun Kumar

DOI: https://doi.org/10.5815/ijwmt.2025.02.01, Pub. Date: 8 Apr. 2025

In the realm of Wireless Sensor Networks (WSN), approaches to managing power are generally divided into two main strategies: reducing power consumption and optimizing power distribution. Power reduction strategies focus on creating a path for data packets between the sink and destination nodes that minimizes the distance and, consequently, the number of hops required. In contrast, power optimization strategies seek to enhance data transfer efficiency without splitting the network into disconnected segments. Adjusting the data path to balance power often leads to longer routes, which can shorten the network's lifespan. Conversely, opting for the shortest possible path tends to result in a densely packed network structure. The newly proposed Adaptable Power Allocation Framework (APAF) aims to improve energy-efficient routing by simultaneously addressing both power balance optimization and the management of the data packet path. Unlike conventional routing methods, which primarily focus on the shortest path, APAF designs the data pathway by taking into account both the least amount of data transmission and the equilibrium of power distribution and balancing. Through a focus on power balance optimization and intelligent data path management, it demonstrates its effectiveness in improving energy-efficient routing. This study introduces the Adaptable Power Allocation Framework (APAF), which improves energy-efficient routing in WSNs by balancing power consumption and optimizing the data path. APAF is compared with traditional methods (LEACH, Swarm Optimization), showing a 20-30% improvement in data loss reduction and extending network lifespan.

[...] Read more.
A Comparative Analysis of Extended Low Energy Adaptive Clustering Hierarchy (X-Leach) Routing Protocol

By Peter Maina Mwangi

DOI: https://doi.org/10.5815/ijwmt.2025.02.02, Pub. Date: 8 Apr. 2025

Wireless sensor networks (WSNs) are critical in a wide range of applications, including environmental monitoring, industrial automation, and other areas. However, their effectiveness is frequently restricted due to sensor nodes' low energy resources. The Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is commonly used to improve energy efficiency in WSNs. Despite its benefits, LEACH has substantial downsides, such as uneven energy distribution and poor cluster head selection, which results in a shorter network lifetime. To address these limitations, we presented the Extended Low Energy Adaptive Clustering Hierarchy (X-LEACH) protocol, which includes enhanced cluster head selection methods and balanced energy utilization. This paper presents a comparative analysis of X-LEACH performance using extensive simulation experiments. The primary aim of this study is to carry a comparative analysis to evaluate X-LEACH's performance across various network scenarios, including sparsely and densely populated nodes, increased number of rounds, and increasing the initial energy of nodes. Critical performance metrics such as the number of dead nodes per round, number of live nodes per round, total remaining energy per round, packet delivery ratio per round throughput per round, and the number of cluster heads formed per round were used. The study analysed the performance of X-LEACH with the traditional LEACH and SEP as the benchmark protocols protocol. Simulation results indicate that X-LEACH significantly improves energy efficiency and network lifespan compared to LEACH and SEP protocols in all the scenarios. 

[...] Read more.
Android Mobile Security and File Protection Using Face Recognition

By Marah Radi Hawa Amani Yousef Owda Majdi Owda

DOI: https://doi.org/10.5815/ijwmt.2025.02.03, Pub. Date: 8 Apr. 2025

The use of Android devices has increased rapidly in recent years, increasing the chance of hacking and crime. Hackers target smartphones for various purposes, including getting sensitive information, financial fraud, identity theft, and other crimes. As a result, Android users must be aware of these possible dangers and take necessary measures to secure their smartphones. Because smartphones are the primary repository of personal sensitive information, smartphone designers must include security measures and encourage users to install freely available security software. Most studies have evaluated facial recognition as the most secure feature. This paper shows the uses of a facial recognition application to protect user files that contain sensitive information. The application uses machine-learning algorithms, specifically a Convolutional Neural Network (CNN) for face recognition that detects the user's face, tries to access the file, compares it with the basic image in the local file, and gives the result of whether to open the file or reject depending on the compared image. The application addresses critical concerns and improves file privacy features on Android devices, ensuring user file safety, and achieving success with 99% accuracy. It can also distinguish the faces of women wearing a shawl and people wearing glasses.

[...] Read more.
Novel Machine Learning Approaches for Identifying Attacks in IoT-based Smart Home Environment

By Oyelakin A. M. Sanni S. A. Adegbola I. A. Salau-Ibrahim T. T. Bakare-Busari Z. M. Saka B. A.

DOI: https://doi.org/10.5815/ijwmt.2025.02.04, Pub. Date: 8 Apr. 2025

Attackers keep launching different attacks on computer networks. Signature-based and Machine Learning (ML)-based techniques have been used to build models for promptly identifying these attacks in networks. However, ML-based approaches are more popular than their counterparts because of their ability to detect zero-day attacks.  In the Internet of Things (IoT), devices are interconnected and this called for the need to guide such networks against intrusions. This study aims at building effective ML models from a recently released IoT-based Smart Home dataset. The study revealed patterns and characteristics of the IoT dataset, pre-processed it and then selected discriminant features using Binary Bat Algorithm (BBA). The pre-processing of the Smart Home IoT dataset for the study was carried out based on the issues identified during the exploratory analyses. The experimental evaluation carried out revealed that all the learning algorithms achieved promising classification results. For instance, Decision Trees recorded 98.60% accuracy, KNN produced 99.60% accuracy while Random Forest (RF) and AdaBoost-based models recorded 100.00% and 99.91% respectively. In all other metrics, RF-based attack classification model slightly recorded the best results. The study concluded that the EDA, innovative data pre-processing, BBA-based feature selection improved the classification performances of the ML approaches used in this study.

[...] Read more.
Evaluation of Machine Learning Algorithms for Malware Detection: A Comprehensive Review

By Sadia Haq Tamanna Muhammad Muhtasim Aroni Saha Prapty Amrin Nahar Md. Tanvir Ahmed Tagim Fahmida Rahman Moumi Shadia Afrin

DOI: https://doi.org/10.5815/ijwmt.2025.02.05, Pub. Date: 8 Apr. 2025

Malware outperforms conventional signature-based techniques by posing a dynamic and varied threat to digital environments. In cybersecurity, machine learning has become a potent device, providing flexible and data-driven models for malware identification. The significance of choosing the optimal method for this purpose is emphasized in this review paper. Assembling various datasets comprising benign and malicious samples is the first step in the research process. Important data pretreatment procedures like feature extraction and dimensionality reduction are also included. Machine learning techniques, ranging from decision trees to deep learning models, are evaluated based on metrics like as accuracy, precision, recall, F1-score, and ROC-AUC, which determine how well they distinguish dangerous software from benign applications. A thorough examination of numerous studies shows that the Random Forest algorithm is the most effective in identifying malware. Because Random Forest can handle complex and dynamic malware so well, it performs very well in batch and real-time scenarios. It also performs exceptionally well in static and dynamic analysis circumstances. This study emphasizes how important machine learning is, and how Random Forest is the basis for creating robust malware detection. Its effectiveness, scalability, and adaptability make it a crucial tool for businesses and individuals looking to protect sensitive data and digital assets. In conclusion, by highlighting the value of machine learning and establishing Random Forest as the best-in-class method for malware detection, this review paper advances the subject of cybersecurity. Ethical and privacy concerns reinforce the necessity for responsible implementation and continuous research to tackle the changing malware landscape.

[...] Read more.
Smart Locker: IOT based Intelligent Locker with Password Protection and Face Detection Approach

By Niaz Mostakim Ratna R Sarkar Md. Anowar Hossain

DOI: https://doi.org/10.5815/ijwmt.2019.03.01, Pub. Date: 8 May 2019

In today’s world, security becomes a very important issue. We are always concerned about the security of our valuables. In this paper, we propose an IOT based intelligent smart locker with OTP and face detection approach, which provides security, authenticity and user-friendly mechanism. This smart locker will be organized at banks, offices, homes and other places to ensure security. In order to use this locker firstly the user have to login. User has to send an unlock request code (OTP) and after getting a feedback Email with OTP, he/she will be able to unlock the locker to access his/her valuables. We also introduce face detection approach to our proposed smart locker to ensure security and authenticity.

[...] Read more.
Design of Dual Band Microstrip Patch Antenna for 5G Communication Operating at 28 GHz and 46 GHz

By Anurag Nayak Shreya Dutta Sudip Mandal

DOI: https://doi.org/10.5815/ijwmt.2023.02.05, Pub. Date: 8 Apr. 2023

The design of suitable compact antenna for 5G applications with superior return loss and bandwidth is still a fascinating task to the researchers. In this paper, the authors have designed a dual band microstrip patch antenna for 5G communications at 28 GHz and 46 GHz using CST studio. Rectangular patch antenna with double slots is considered to serve the purpose. The performance of the proposed patch antenna is very satisfactory in terms of return loss, VSWR, bandwidth and directivity. The values of S11 are well below -39dB and values of VSWR are very close to 1 for both resonance frequencies. The bandwidths for both cases are greater than 1.8 GHz which is an essential characteristic of 5G patch antennas for high speed connectivity and efficiency. Directivities are above 6 dB which are very suitable for the present problem. The simulation results are also compared with existing dual band 5G patch antennas and it has been observed that proposed antenna has outperformed the existing patch antennas that worked in 28GHz and 46GHz frequency range. The main advantage of this patch antenna is that it’s simple structure and good return loss, bandwidth and gain.

[...] Read more.
Quantum Computers’ threat on Current Cryptographic Measures and Possible Solutions

By Tohfa Niraula Aditi Pokharel Ashmita Phuyal Pratistha Palikhel Manish Pokharel

DOI: https://doi.org/10.5815/ijwmt.2022.05.02, Pub. Date: 8 Oct. 2022

Cryptography is a requirement for confidentiality and authentic communication, and it is an indispensable technology used to protect data security. Quantum computing is a hypothetical model, still in tentative analysis but is rapidly gaining traction among scientific communities. Quantum computers have the potential to become a pre-eminent threat to all secure communication because their performance exceeds that of conventional computers. Consequently, quantum computers are capable of iterating through a large number of keys to search for secret keys or quickly calculate cryptographic keys, thereby endangering cloud security measures. This paper’s main target is to summarize the vulnerability of current cryptographic measures in front of a quantum computer. The paper also aims to cover the fundamental concept of potential quantum-resilient cryptographic techniques and explain how they can be a solution to complete secure key distribution in a post-quantum future.

[...] Read more.
A Compact, Tri-Band and 9-Shape Reconfigurable Antenna for WiFi, WiMAX and WLAN Applications

By Izaz Ali Shah Shahzeb Hayat Ihtesham Khan Imtiaz. Alam Sadiq Ullah Adeel Afridi

DOI: https://doi.org/10.5815/ijwmt.2016.05.05, Pub. Date: 8 Sep. 2016

This paper introduces a novel 9-shaped multiband frequency reconfigurable monopole antenna for wireless applications, using 1.6 mm thicker FR4 substrate and a truncated metallic ground surface. The designed antenna performs in single and dual frequency modes depending on switching states. The antenna works in a single band (WiMAX at 3.5 GHz) when the switch is in the OFF state. The dual band frequency mode (Wi-Fi at 2.45 GHz and WLAN at 5.2 GHz) is obtained when the switch is turned ON. The directivities are: 2.13 dBi, 2.77 dBi and 3.99 dBi and efficiencies: 86%, 93.5% and 84.4% are attained at frequencies 2.45 GHz, 3.5 GHz and 5.2 GHz respectively. The proposed antenna has VSWR< 1.5 for all the three frequencies. The scattering and far-field parameters of the designed antenna are analyzed using computer simulation technology CST 2014. The performance of the proposed antenna is analyzed on the basis of VSWR, efficiency, gain, radiation pattern and return loss.

[...] Read more.
Methodologies, Requirements and Challenges of Cybersecurity Frameworks: A Review

By Alaa Dhahi Khaleefah Haider M. Al-Mashhadi

DOI: https://doi.org/10.5815/ijwmt.2023.01.01, Pub. Date: 8 Feb. 2023

As a result of the emergence of new business paradigms and the development of the digital economy, the interaction between operations, services, things, and software through numerous fields and communities may now be processed through value chains networks. Despite the integration of all data networks, computing models, and distributed software that offers a broader cloud computing, the security solution is have a serious important impact and missing or weak, and more work is needed to strengthen security requirements such as mutual entity trustworthiness, Access controls and identity management, as well as data protection, are all aspects of detecting and preventing attacks or threats. Various international organizations, academic universities and institutions, and organizations have been working diligently to establish cybersecurity frameworks (CSF) in order to combat cybersecurity threats by (CSFs). This paper describes CSFs from the perspectives of standard organizations such as ISO CSF and NIST CSF, as well as several proposed frameworks from researchers, and discusses briefly their characteristics and features. The common ideas described in this study could be helpful for creating a CSF model in general.

[...] Read more.
Performance Evaluation of Slotted Star-Shaped Dual-band Patch Antenna for Satellite Communication and 5G Services

By Md. Najmul Hossain Al Amin Islam Jungpil Shin Md. Abdur Rahim Md. Humaun Kabir

DOI: https://doi.org/10.5815/ijwmt.2023.03.05, Pub. Date: 8 Jun. 2023

The advancement of wireless communication technology is growing very fast. For next-generation communication systems (like 5G mobile services), wider bandwidth, high gain, and small-size antennas are very much needed. Moreover, it is expected that the next-generation mobile system will also support satellite technology. Therefore, this paper proposes a slotted star-shaped dual-band patch antenna that can be used for the integrated services of satellite communication and 5G mobile services whose overall dimension is 15×14×1.6 mm3. The proposed antenna operates from 18.764 GHz to 19.775 GHz for K-band satellite communication and 27.122 GHz to 29.283 GHz for 5G (mmWave) mobile services. The resonance frequencies of the proposed antenna are 19.28 GHz and 28.07 GHz having bandwidths of 1.011 GHz and 2.161 GHz, respectively. Moreover, the proposed dual-band patch antenna has a maximum radiation efficiency of 76.178% and a maximum gain of 7.596 dB.

[...] Read more.
Smart Home Security Using Facial Authentication and Mobile Application

By Khandaker Mohammad Mohi Uddin Shohelee Afrin Shahela Naimur Rahman Rafid Mostafiz Md. Mahbubur Rahman

DOI: https://doi.org/10.5815/ijwmt.2022.02.04, Pub. Date: 8 Apr. 2022

In this fast-paced technological world, individuals want to access all their electronic equipment remotely, which requires devices to connect over a network via the Internet. However, it raises quite a lot of critical security concerns. This paper presented a home automation security system that employs the Internet of Things (IoT) for remote access to one's home through an Android application, as well as Artificial Intelligence (AI) to ensure the home's security. Face recognition is utilized to control door entry in a highly efficient security system. In the event of a technical failure, an additional security PIN is set up that is only accessible by the owner. Although a home automation system may be used for various tasks, the cost is prohibitive for many customers. Hence, the objective of this paper is to provide a budget and user-friendly system, ensuring access to the application and home attributes by using multi-modal security. Using Haar Cascade and LBPH the system achieved 92.86% accuracy while recognizing face.

[...] Read more.
Adversarial Machine Learning Attacks and Defenses in Network Intrusion Detection Systems

By Amir F. Mukeri Dwarkoba P. Gaikwad

DOI: https://doi.org/10.5815/ijwmt.2022.01.02, Pub. Date: 8 Feb. 2022

Machine learning is now being used for applications ranging from healthcare to network security. However, machine learning models can be easily fooled into making mistakes using adversarial machine learning attacks. In this article, we focus on the evasion attacks against Network Intrusion Detection System (NIDS) and specifically on designing novel adversarial attacks and defenses using adversarial training. We propose white box attacks against intrusion detection systems. Under these attacks, the detection accuracy of model suffered significantly. Also, we propose a defense mechanism against adversarial attacks using adversarial sample augmented training. The biggest advantage of proposed defense is that it doesn’t require any modification to deep neural network architecture or any additional hyperparameter tuning. The gain in accuracy using very small adversarial samples for training deep neural network was however found to be significant.

[...] Read more.
SDN Interfaces: Protocols, Taxonomy and Challenges

By Suhail Ahmad Ajaz Hussain Mir

DOI: https://doi.org/10.5815/ijwmt.2022.02.02, Pub. Date: 8 Apr. 2022

The ever-increasing demands of Internet services like video on demand, big data applications, IoE and multi-tenant data centers have compelled the network industry to change its conventional non-evolving network architecture. Software Defined Network (SDN) has emerged as a promising network architecture which provides necessary abstractions and novel APIs to facilitate network innovations and simplifies network resource management by breaking the conventional network into multiple planes. All these SDN planes interact through open interfaces or APIs which are commonly categorized into southbound, northbound and west/eastbound interfaces. In this manuscript, we have identified and emphasized various communication protocols used at south and northbound interfaces. We have provided a taxonomy of south and northbound communication protocols based on their dependence, capabilities and properties. The pros and cons associated with each communication mechanism are highlighted and the numerous research challenges and open issues involved at these two interfaces are elucidated. In addition to it, we have proposed the necessary abstractions and extensions required in communication protocols at these two interfaces to simplify real-time monitoring and virtualization in next generation networks.

[...] Read more.
A Metric for Evaluating Security Models based on Implementation of Public Key Infrastructure

By Sigsbert Rwiza Mussa Kissaka Kosmas Kapis

DOI: https://doi.org/10.5815/ijwmt.2020.06.04, Pub. Date: 8 Dec. 2020

International security evaluation metrics are too general and not focused on evaluating security models implemented using Public Key Infrastructure (PKI). This study was conducted to develop the metric for evaluating security models based on implementation of PKI by using insights from literature. Literature review was done based on inclusion and exclusion criteria. The developed metric was tested using ranking attributes and ranking scales. The results reveal that the developed metric is applicable for evaluating security models based on implementation of PKI. This is verified by the tabular results indicating evaluation of selected security models based on implementation of PKI by using ranking attributes and ranking scales. This study contributes to the body of knowledge a metric for evaluating security models based on implementation of PKI. 

[...] Read more.
Design of Dual Band Microstrip Patch Antenna for 5G Communication Operating at 28 GHz and 46 GHz

By Anurag Nayak Shreya Dutta Sudip Mandal

DOI: https://doi.org/10.5815/ijwmt.2023.02.05, Pub. Date: 8 Apr. 2023

The design of suitable compact antenna for 5G applications with superior return loss and bandwidth is still a fascinating task to the researchers. In this paper, the authors have designed a dual band microstrip patch antenna for 5G communications at 28 GHz and 46 GHz using CST studio. Rectangular patch antenna with double slots is considered to serve the purpose. The performance of the proposed patch antenna is very satisfactory in terms of return loss, VSWR, bandwidth and directivity. The values of S11 are well below -39dB and values of VSWR are very close to 1 for both resonance frequencies. The bandwidths for both cases are greater than 1.8 GHz which is an essential characteristic of 5G patch antennas for high speed connectivity and efficiency. Directivities are above 6 dB which are very suitable for the present problem. The simulation results are also compared with existing dual band 5G patch antennas and it has been observed that proposed antenna has outperformed the existing patch antennas that worked in 28GHz and 46GHz frequency range. The main advantage of this patch antenna is that it’s simple structure and good return loss, bandwidth and gain.

[...] Read more.
Full-Wave Numerical Analysis of Dual-Band E-Patch Antenna and Reactive Loading Technique to Ascertain the Impedance Driving Point Function

By Fubara Edmund Alfred-Abam Pam Paul Gyang Fiyinfoluwa P. Olubodun

DOI: https://doi.org/10.5815/ijwmt.2023.03.03, Pub. Date: 8 Jun. 2023

This paper encompasses the numerical analysis involved with the Electromagnetic (EM) full-wave simulation tool Advanced Design System (ADS) which uses the Method of Moment (MOM) and Finite Element Method (FEM). MOM is utilized to solve Maxwell’s equations which are transformed into integral equations before discretization and boundary conditions are applied while FEM computes the electrical behavior of the high frequency EM wave distribution, and then analyze the antenna parameters. The main objective is to investigate the effect of reactive loading on the microstrip patch surface which is used to control the behavior of the impedance bandwidth and obtain dual-band frequency operation. The study further examines how the perturbed patch antenna design targets the operating frequencies of 2.4 GHz and 5.8 GHz for possible range and speed. The proposed method provides insight into the analysis of the mathematical model employed in attaining the Driving Point Impedance Function (DPF) of the E-patch microstrip patch antenna. This approach was done to quantify the reduction in reflections for improved Radio Frequency (RF) network output.

[...] Read more.
Smart Locker: IOT based Intelligent Locker with Password Protection and Face Detection Approach

By Niaz Mostakim Ratna R Sarkar Md. Anowar Hossain

DOI: https://doi.org/10.5815/ijwmt.2019.03.01, Pub. Date: 8 May 2019

In today’s world, security becomes a very important issue. We are always concerned about the security of our valuables. In this paper, we propose an IOT based intelligent smart locker with OTP and face detection approach, which provides security, authenticity and user-friendly mechanism. This smart locker will be organized at banks, offices, homes and other places to ensure security. In order to use this locker firstly the user have to login. User has to send an unlock request code (OTP) and after getting a feedback Email with OTP, he/she will be able to unlock the locker to access his/her valuables. We also introduce face detection approach to our proposed smart locker to ensure security and authenticity.

[...] Read more.
A Systematic Review of Privacy Preservation Models in Wireless Networks

By Namrata J. Patel Ashish Jadhav

DOI: https://doi.org/10.5815/ijwmt.2023.02.02, Pub. Date: 8 Apr. 2023

Privacy preservation in wireless networks is a multidomain task, including encryption, hashing, secure routing, obfuscation, and third-party data sharing. To design a privacy preservation model for wireless networks, it is recommended that data privacy, location privacy, temporal privacy, node privacy, and route privacy be incorporated. However, incorporating these models into any wireless network is computationally complex. Moreover, it affects the quality of services (QoS) parameters like end-to-end delay, throughput, energy consumption, and packet delivery ratio. Therefore, network designers are expected to use the most optimum privacy models that should minimally affect these QoS metrics. To do this, designers opt for standard privacy models for securing wireless networks without considering their interconnectivity and interface-ability constraints. Due to this, network security increases, but overall, network QoS is reduced. To reduce the probability of such scenarios, this text analyses and reviews various state-of-the-art models for incorporating privacy preservation in wireless networks without compromising their QoS performance. These models are compared on privacy strength, end-to-end delay, energy consumption, and network throughput. The comparison will assist network designers and researchers to select the best models for their given deployments, thereby assisting in privacy improvement while maintaining high QoS performance.Moreover, this text also recommends various methods to work together to improve their performance. This text also recommends various proven machine learning architectures that can be contemplated & explored by networks to enhance their privacy performance. The paper intends to provide a brief survey of different types of Privacy models and their comparison, which can benefit the readers in choosing a privacy model for their use.

[...] Read more.
Quantum Computers’ threat on Current Cryptographic Measures and Possible Solutions

By Tohfa Niraula Aditi Pokharel Ashmita Phuyal Pratistha Palikhel Manish Pokharel

DOI: https://doi.org/10.5815/ijwmt.2022.05.02, Pub. Date: 8 Oct. 2022

Cryptography is a requirement for confidentiality and authentic communication, and it is an indispensable technology used to protect data security. Quantum computing is a hypothetical model, still in tentative analysis but is rapidly gaining traction among scientific communities. Quantum computers have the potential to become a pre-eminent threat to all secure communication because their performance exceeds that of conventional computers. Consequently, quantum computers are capable of iterating through a large number of keys to search for secret keys or quickly calculate cryptographic keys, thereby endangering cloud security measures. This paper’s main target is to summarize the vulnerability of current cryptographic measures in front of a quantum computer. The paper also aims to cover the fundamental concept of potential quantum-resilient cryptographic techniques and explain how they can be a solution to complete secure key distribution in a post-quantum future.

[...] Read more.
Design of Microstrip Patch Antenna Array

By Mohd Asaduddin Shaik Seif Shah Mohd Asim Siddiqui

DOI: https://doi.org/10.5815/ijwmt.2023.03.04, Pub. Date: 8 Jun. 2023

Throughout the years there has been a crisis for low gain and efficiency in Microstrip patch antennas. Therefore, the microstrip patch antenna was designed for better gain, directivity and efficiency using array configuration of microstrip patch antenna with low dielectric constant at 10.3GHZ resonant frequency. The proposed design is of a triangular shaped patch array and a substrate RT duroid-5880 of dielectric constant 2.2. The results after simulation shows a good return loss, bandwidth around 950Mhz-1Ghz, directivity of 11.4db in a particular direction, gain of 11.4 dB with 99% radiation effect. The design proposed is helpful for applications like military defence and communication purposes.

[...] Read more.
Methodologies, Requirements and Challenges of Cybersecurity Frameworks: A Review

By Alaa Dhahi Khaleefah Haider M. Al-Mashhadi

DOI: https://doi.org/10.5815/ijwmt.2023.01.01, Pub. Date: 8 Feb. 2023

As a result of the emergence of new business paradigms and the development of the digital economy, the interaction between operations, services, things, and software through numerous fields and communities may now be processed through value chains networks. Despite the integration of all data networks, computing models, and distributed software that offers a broader cloud computing, the security solution is have a serious important impact and missing or weak, and more work is needed to strengthen security requirements such as mutual entity trustworthiness, Access controls and identity management, as well as data protection, are all aspects of detecting and preventing attacks or threats. Various international organizations, academic universities and institutions, and organizations have been working diligently to establish cybersecurity frameworks (CSF) in order to combat cybersecurity threats by (CSFs). This paper describes CSFs from the perspectives of standard organizations such as ISO CSF and NIST CSF, as well as several proposed frameworks from researchers, and discusses briefly their characteristics and features. The common ideas described in this study could be helpful for creating a CSF model in general.

[...] Read more.
Design of the E-Patch Dual-Band Microstrip Antenna with Low Reflections for WLAN Application

By Fubara Edmund Alfred-Abam Pam Paul Gyang

DOI: https://doi.org/10.5815/ijwmt.2023.01.02, Pub. Date: 8 Feb. 2023

Antennas are either massive or miniaturized structures useful for the transmission and reception of signals associated with Electromagnetic (EM) radiation. Although Microstrip Patch Antennas (MSA) are advantageous they exhibit several drawbacks which may impair a faster communication throughput. They mostly display narrow impedance bandwidth amidst other grave issues. This study presents some approaches such as transmission line analysis and modeling for investigating the complexities associated with the MSA configurations given the shortcomings of narrow impedance bandwidth. in other to achieve the associated input impedance for the dual-band E-patch microstrip antenna. It also investigated the fabrication of the E-patch MSA which targeted the operating frequencies of 2.4 GHz and 5.8 GHz for possible range and speed. The fabricated prototype was tested using a high-frequency communication instrument known as the Vector Network Analyzer (VNA) to obtain the return loss and Voltage Standing Wave Ratio (VSWR). This method was done to quantify the reduction of reflections for enhanced Radio Frequency (RF) network output. This work helps to mitigate the challenges encountered when designing and developing microstrip patch antennas having a relatively small size in different configurations. 

[...] Read more.
Design of an IoT-Enabled Solar Tracking System For Smart Farms

By JD Motha M.W.P Maduranga NT Jayatilaka

DOI: https://doi.org/10.5815/ijwmt.2022.06.01, Pub. Date: 8 Dec. 2022

This paper presents a novel IoT system to eliminate the need for human intervention for solar panel maintenance purposes in smart farms. For the convenience of the consumer, a wireless sensing system could be implemented to automate these functions. This would eliminate the cost of any additional labor charges for panel maintenance as the system implemented would automatically calculate the position as per the current time of the day and adjust the panel's position accordingly to harvest the most amount of sun rays into the PV panel. Unlike the conventional tracking method where the panel is rotated hourly, we propose a fixed set of Sun Altitude and Azimuth angle ranges that are hardcoded to each panel position so that throughout the year whenever these angles fall out of range it jumps to the next position. The system results in a straightforward method by retrieving the current date/time from the RTC module and calculating the respective Sun Altitude and Azimuth angle to determine the position to adjust the position of the panel accordingly, thus producing effective power outputs and strong sun tracking results.

[...] Read more.
Performance Analysis of IoT Cloud-based Platforms using Quality of Service Metrics

By Supreme Ayewoh Okoh Elizabeth N. Onwuka Suleiman Zubairu Bala Alhaji Salihu Peter Y. Dibal

DOI: https://doi.org/10.5815/ijwmt.2023.01.05, Pub. Date: 8 Feb. 2023

There are several IoT platforms providing a variety of services for different applications. Finding the optimal fit between application and platform is challenging since it is hard to evaluate the effects of minor platform changes. Several websites offer reviews based on user ratings to guide potential users in their selection. Unfortunately, review data are subjective and sometimes conflicting – indicating that they are not objective enough for a fair judgment. Scientific papers are known to be the reliable sources of authentic information based on evidence-based research. However, literature revealed that though a lot of work has been done on theoretical comparative analysis of IoT platforms based on their features, functions, architectures, security, communication protocols, analytics, scalability, etc., empirical studies based on measurable metrics such as response time, throughput, and technical efficiency, that objectively characterize user experience seem to be lacking. In an attempt to fill this gap, this study used web analytic tools to gather data on the performance of some selected IoT cloud platforms. Descriptive and inferential statistical models were used to analyze the gathered data to provide a technical ground for the performance evaluation of the selected IoT platforms. Results showed that the platforms performed differently in the key performance metrics (KPM) used. No platform emerged best in all the KPMs. Users' choice will therefore be based on metrics that are most relevant to their applications. It is believed that this work will provide companies and other users with quantitative evidence to corroborate social media data and thereby give a better insight into the performance of IoT platforms. It will also help vendors to improve on their quality of service (QoS).

[...] Read more.